Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems
The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational c...
Gespeichert in:
Veröffentlicht in: | Journal of communications technology & electronics 2022-12, Vol.67 (12), p.1542-1551 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1551 |
---|---|
container_issue | 12 |
container_start_page | 1542 |
container_title | Journal of communications technology & electronics |
container_volume | 67 |
creator | Bakulin, M. G. Kreyndelin, V. B. Pankratov, D. Yu Stepanova, A. G. |
description | The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems. |
doi_str_mv | 10.1134/S1064226922120014 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2755891383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730701588</galeid><sourcerecordid>A730701588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-137aa90f23adf61a1d31db0e0ede60f4ff69a538c1dcd0e42ee58460925d2bab3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1JoUnaH9CboKdAnOjD8sdx2SbpQraBbnM2WmvkKrGlrUcO639fLS6kSyg6SGieR2jeSZLPjF4xJrLrDaN5xnlecc44pSx7l5wyKWWaS1mcxHMsp4f6h-QM8YlSUeVUnCbPC6e6CS0Sb8hX6L0eOxWsd-TGGNtYcM1ElNNk6ftdB3sbJvKI1rXku3fpnRoRrXJksdsNfm_7WbWOrFUsvABZr9YPZDNhgB4_Ju-N6hA-_d3Pk8fbm5_Lb-n9w91qubhPG1GUIWWiUKqihgulTc4U04LpLQUKGnJqMmPySklRNkw3mkLGAWSZ5bTiUvOt2orz5Mv8bvzT7xEw1E9-HGKfWPNCyrJiohSRupqpVnVQW2d8GFQTl4beNt6BsfF-UQhaUCbLMgoXR0JkAuxDe8igXm1-HLOX_7DbMSYGMRCHtv0VcFaOcDbjzeARBzD1bohhDlPNaH2Yb_1mvtHhs4ORdS0Mr13-X_oDzcSmjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755891383</pqid></control><display><type>article</type><title>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</title><source>SpringerNature Journals</source><creator>Bakulin, M. G. ; Kreyndelin, V. B. ; Pankratov, D. Yu ; Stepanova, A. G.</creator><creatorcontrib>Bakulin, M. G. ; Kreyndelin, V. B. ; Pankratov, D. Yu ; Stepanova, A. G.</creatorcontrib><description>The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226922120014</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Analysis ; Antennas ; Antennas (Electronics) ; Approximation ; Communications Engineering ; Communications systems ; Complexity ; Demodulation ; Engineering ; Interference ; Interference immunity ; Mathematical analysis ; MIMO communication ; MIMO communications ; Modulation ; Networks ; Newton methods ; Parameter estimation ; Parameter modification ; Theory and Methods of Information Processing</subject><ispartof>Journal of communications technology & electronics, 2022-12, Vol.67 (12), p.1542-1551</ispartof><rights>Pleiades Publishing, Inc. 2022. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2022, Vol. 67, No. 12, pp. 1542–1551. © Pleiades Publishing, Inc., 2022. Russian Text © The Author(s), 2022, published in Informatsionnye Protsessy, 2022, Vol. 22, No. 2, pp. 77–92.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-137aa90f23adf61a1d31db0e0ede60f4ff69a538c1dcd0e42ee58460925d2bab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226922120014$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226922120014$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bakulin, M. G.</creatorcontrib><creatorcontrib>Kreyndelin, V. B.</creatorcontrib><creatorcontrib>Pankratov, D. Yu</creatorcontrib><creatorcontrib>Stepanova, A. G.</creatorcontrib><title>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</title><title>Journal of communications technology & electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Approximation</subject><subject>Communications Engineering</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Demodulation</subject><subject>Engineering</subject><subject>Interference</subject><subject>Interference immunity</subject><subject>Mathematical analysis</subject><subject>MIMO communication</subject><subject>MIMO communications</subject><subject>Modulation</subject><subject>Networks</subject><subject>Newton methods</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Theory and Methods of Information Processing</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kU1r3DAQhk1JoUnaH9CboKdAnOjD8sdx2SbpQraBbnM2WmvkKrGlrUcO639fLS6kSyg6SGieR2jeSZLPjF4xJrLrDaN5xnlecc44pSx7l5wyKWWaS1mcxHMsp4f6h-QM8YlSUeVUnCbPC6e6CS0Sb8hX6L0eOxWsd-TGGNtYcM1ElNNk6ftdB3sbJvKI1rXku3fpnRoRrXJksdsNfm_7WbWOrFUsvABZr9YPZDNhgB4_Ju-N6hA-_d3Pk8fbm5_Lb-n9w91qubhPG1GUIWWiUKqihgulTc4U04LpLQUKGnJqMmPySklRNkw3mkLGAWSZ5bTiUvOt2orz5Mv8bvzT7xEw1E9-HGKfWPNCyrJiohSRupqpVnVQW2d8GFQTl4beNt6BsfF-UQhaUCbLMgoXR0JkAuxDe8igXm1-HLOX_7DbMSYGMRCHtv0VcFaOcDbjzeARBzD1bohhDlPNaH2Yb_1mvtHhs4ORdS0Mr13-X_oDzcSmjA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bakulin, M. G.</creator><creator>Kreyndelin, V. B.</creator><creator>Pankratov, D. Yu</creator><creator>Stepanova, A. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20221201</creationdate><title>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</title><author>Bakulin, M. G. ; Kreyndelin, V. B. ; Pankratov, D. Yu ; Stepanova, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-137aa90f23adf61a1d31db0e0ede60f4ff69a538c1dcd0e42ee58460925d2bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Approximation</topic><topic>Communications Engineering</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Demodulation</topic><topic>Engineering</topic><topic>Interference</topic><topic>Interference immunity</topic><topic>Mathematical analysis</topic><topic>MIMO communication</topic><topic>MIMO communications</topic><topic>Modulation</topic><topic>Networks</topic><topic>Newton methods</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Theory and Methods of Information Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakulin, M. G.</creatorcontrib><creatorcontrib>Kreyndelin, V. B.</creatorcontrib><creatorcontrib>Pankratov, D. Yu</creatorcontrib><creatorcontrib>Stepanova, A. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology & electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakulin, M. G.</au><au>Kreyndelin, V. B.</au><au>Pankratov, D. Yu</au><au>Stepanova, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</atitle><jtitle>Journal of communications technology & electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>12</issue><spage>1542</spage><epage>1551</epage><pages>1542-1551</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226922120014</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2269 |
ispartof | Journal of communications technology & electronics, 2022-12, Vol.67 (12), p.1542-1551 |
issn | 1064-2269 1555-6557 |
language | eng |
recordid | cdi_proquest_journals_2755891383 |
source | SpringerNature Journals |
subjects | Algorithms Analysis Antennas Antennas (Electronics) Approximation Communications Engineering Communications systems Complexity Demodulation Engineering Interference Interference immunity Mathematical analysis MIMO communication MIMO communications Modulation Networks Newton methods Parameter estimation Parameter modification Theory and Methods of Information Processing |
title | Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Demodulation%20Efficiency%20and%20Complexity%20Using%20Non-Gaussian%20Approximation%20in%20Massive%20MIMO%20Systems&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Bakulin,%20M.%20G.&rft.date=2022-12-01&rft.volume=67&rft.issue=12&rft.spage=1542&rft.epage=1551&rft.pages=1542-1551&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226922120014&rft_dat=%3Cgale_proqu%3EA730701588%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755891383&rft_id=info:pmid/&rft_galeid=A730701588&rfr_iscdi=true |