Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems

The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2022-12, Vol.67 (12), p.1542-1551
Hauptverfasser: Bakulin, M. G., Kreyndelin, V. B., Pankratov, D. Yu, Stepanova, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1551
container_issue 12
container_start_page 1542
container_title Journal of communications technology & electronics
container_volume 67
creator Bakulin, M. G.
Kreyndelin, V. B.
Pankratov, D. Yu
Stepanova, A. G.
description The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.
doi_str_mv 10.1134/S1064226922120014
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2755891383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730701588</galeid><sourcerecordid>A730701588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-137aa90f23adf61a1d31db0e0ede60f4ff69a538c1dcd0e42ee58460925d2bab3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1JoUnaH9CboKdAnOjD8sdx2SbpQraBbnM2WmvkKrGlrUcO639fLS6kSyg6SGieR2jeSZLPjF4xJrLrDaN5xnlecc44pSx7l5wyKWWaS1mcxHMsp4f6h-QM8YlSUeVUnCbPC6e6CS0Sb8hX6L0eOxWsd-TGGNtYcM1ElNNk6ftdB3sbJvKI1rXku3fpnRoRrXJksdsNfm_7WbWOrFUsvABZr9YPZDNhgB4_Ju-N6hA-_d3Pk8fbm5_Lb-n9w91qubhPG1GUIWWiUKqihgulTc4U04LpLQUKGnJqMmPySklRNkw3mkLGAWSZ5bTiUvOt2orz5Mv8bvzT7xEw1E9-HGKfWPNCyrJiohSRupqpVnVQW2d8GFQTl4beNt6BsfF-UQhaUCbLMgoXR0JkAuxDe8igXm1-HLOX_7DbMSYGMRCHtv0VcFaOcDbjzeARBzD1bohhDlPNaH2Yb_1mvtHhs4ORdS0Mr13-X_oDzcSmjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755891383</pqid></control><display><type>article</type><title>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</title><source>SpringerNature Journals</source><creator>Bakulin, M. G. ; Kreyndelin, V. B. ; Pankratov, D. Yu ; Stepanova, A. G.</creator><creatorcontrib>Bakulin, M. G. ; Kreyndelin, V. B. ; Pankratov, D. Yu ; Stepanova, A. G.</creatorcontrib><description>The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226922120014</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Analysis ; Antennas ; Antennas (Electronics) ; Approximation ; Communications Engineering ; Communications systems ; Complexity ; Demodulation ; Engineering ; Interference ; Interference immunity ; Mathematical analysis ; MIMO communication ; MIMO communications ; Modulation ; Networks ; Newton methods ; Parameter estimation ; Parameter modification ; Theory and Methods of Information Processing</subject><ispartof>Journal of communications technology &amp; electronics, 2022-12, Vol.67 (12), p.1542-1551</ispartof><rights>Pleiades Publishing, Inc. 2022. ISSN 1064-2269, Journal of Communications Technology and Electronics, 2022, Vol. 67, No. 12, pp. 1542–1551. © Pleiades Publishing, Inc., 2022. Russian Text © The Author(s), 2022, published in Informatsionnye Protsessy, 2022, Vol. 22, No. 2, pp. 77–92.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c378t-137aa90f23adf61a1d31db0e0ede60f4ff69a538c1dcd0e42ee58460925d2bab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226922120014$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226922120014$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bakulin, M. G.</creatorcontrib><creatorcontrib>Kreyndelin, V. B.</creatorcontrib><creatorcontrib>Pankratov, D. Yu</creatorcontrib><creatorcontrib>Stepanova, A. G.</creatorcontrib><title>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Approximation</subject><subject>Communications Engineering</subject><subject>Communications systems</subject><subject>Complexity</subject><subject>Demodulation</subject><subject>Engineering</subject><subject>Interference</subject><subject>Interference immunity</subject><subject>Mathematical analysis</subject><subject>MIMO communication</subject><subject>MIMO communications</subject><subject>Modulation</subject><subject>Networks</subject><subject>Newton methods</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Theory and Methods of Information Processing</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kU1r3DAQhk1JoUnaH9CboKdAnOjD8sdx2SbpQraBbnM2WmvkKrGlrUcO639fLS6kSyg6SGieR2jeSZLPjF4xJrLrDaN5xnlecc44pSx7l5wyKWWaS1mcxHMsp4f6h-QM8YlSUeVUnCbPC6e6CS0Sb8hX6L0eOxWsd-TGGNtYcM1ElNNk6ftdB3sbJvKI1rXku3fpnRoRrXJksdsNfm_7WbWOrFUsvABZr9YPZDNhgB4_Ju-N6hA-_d3Pk8fbm5_Lb-n9w91qubhPG1GUIWWiUKqihgulTc4U04LpLQUKGnJqMmPySklRNkw3mkLGAWSZ5bTiUvOt2orz5Mv8bvzT7xEw1E9-HGKfWPNCyrJiohSRupqpVnVQW2d8GFQTl4beNt6BsfF-UQhaUCbLMgoXR0JkAuxDe8igXm1-HLOX_7DbMSYGMRCHtv0VcFaOcDbjzeARBzD1bohhDlPNaH2Yb_1mvtHhs4ORdS0Mr13-X_oDzcSmjA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bakulin, M. G.</creator><creator>Kreyndelin, V. B.</creator><creator>Pankratov, D. Yu</creator><creator>Stepanova, A. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20221201</creationdate><title>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</title><author>Bakulin, M. G. ; Kreyndelin, V. B. ; Pankratov, D. Yu ; Stepanova, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-137aa90f23adf61a1d31db0e0ede60f4ff69a538c1dcd0e42ee58460925d2bab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Approximation</topic><topic>Communications Engineering</topic><topic>Communications systems</topic><topic>Complexity</topic><topic>Demodulation</topic><topic>Engineering</topic><topic>Interference</topic><topic>Interference immunity</topic><topic>Mathematical analysis</topic><topic>MIMO communication</topic><topic>MIMO communications</topic><topic>Modulation</topic><topic>Networks</topic><topic>Newton methods</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Theory and Methods of Information Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakulin, M. G.</creatorcontrib><creatorcontrib>Kreyndelin, V. B.</creatorcontrib><creatorcontrib>Pankratov, D. Yu</creatorcontrib><creatorcontrib>Stepanova, A. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakulin, M. G.</au><au>Kreyndelin, V. B.</au><au>Pankratov, D. Yu</au><au>Stepanova, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>67</volume><issue>12</issue><spage>1542</spage><epage>1551</epage><pages>1542-1551</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>The use of a large number of antennas (Massive MIMO systems) provides immense advantages to modern communication systems in achieving a high data rate, spectral efficiency, and large number of concurrently connected users. However, the increase in the number of antennas leads to high computational complexity of the demodulation algorithms, and the problem is aggravated if higher order modulation schemes are used. As a result, new demodulation algorithms with good interference immunity characteristics and acceptable computational complexity should be synthesized for practical implementation in Massive MIMO systems. An approach was proposed earlier for applying a non-Gaussian approximation of the a priori distribution of the estimated parameters and a modified Newton method for demodulation in communication systems with a large number of antennas. Here, the interference immunity of the proposed demodulation algorithm is examined for a different number of antennas and different modulation orders and its computational complexity is evaluated. Comparison of the characteristics of the proposed demodulation algorithm with the popular MMSE and K-best algorithms confirms the effectiveness of proposed non-Gaussian approximation approach in combination with the modified Newton method for demodulation in Massive MIMO systems.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226922120014</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2022-12, Vol.67 (12), p.1542-1551
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_journals_2755891383
source SpringerNature Journals
subjects Algorithms
Analysis
Antennas
Antennas (Electronics)
Approximation
Communications Engineering
Communications systems
Complexity
Demodulation
Engineering
Interference
Interference immunity
Mathematical analysis
MIMO communication
MIMO communications
Modulation
Networks
Newton methods
Parameter estimation
Parameter modification
Theory and Methods of Information Processing
title Analysis of Demodulation Efficiency and Complexity Using Non-Gaussian Approximation in Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Demodulation%20Efficiency%20and%20Complexity%20Using%20Non-Gaussian%20Approximation%20in%20Massive%20MIMO%20Systems&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Bakulin,%20M.%20G.&rft.date=2022-12-01&rft.volume=67&rft.issue=12&rft.spage=1542&rft.epage=1551&rft.pages=1542-1551&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226922120014&rft_dat=%3Cgale_proqu%3EA730701588%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755891383&rft_id=info:pmid/&rft_galeid=A730701588&rfr_iscdi=true