Co/Zn-metal organic frameworks derived functional matrix for highly active amorphous Se stabilization and advanced lithium storage

Lithium–selenium batteries, as an advanced rechargeable battery system, have attracted wide attention. However, its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials. Herein, a three-dimensional (3D) functional matrix...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2023, Vol.42 (1), p.76-84
Hauptverfasser: Yu, Hong, Kang, Jin-Zhao, Huang, Long-Sheng, Wang, Jin-Jin, Wang, Xiao-Mei, Zhao, Xiang-Yuan, Du, Cheng-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 76
container_title Rare metals
container_volume 42
creator Yu, Hong
Kang, Jin-Zhao
Huang, Long-Sheng
Wang, Jin-Jin
Wang, Xiao-Mei
Zhao, Xiang-Yuan
Du, Cheng-Feng
description Lithium–selenium batteries, as an advanced rechargeable battery system, have attracted wide attention. However, its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials. Herein, a three-dimensional (3D) functional matrix derived from the Co/Zn-metal organic framework is synthesized to unravel the questions raised. It reveals that the strong interaction and voids in the 3D matrix serve to anchor the amorphous Se with high electrochemical properties. The obtained 3DC/Se exhibits 544.2 and 273.2 mAh·g −1 at current densities of 0.1C and 2.0C, respectively, with a diffusion-controlled mechanism. The excessive amount of Se beyond the loading capacity of the matrix leads to the formation of trigonal phase Se, which shows an unsatisfying electrochemical property. Graphical abstract
doi_str_mv 10.1007/s12598-022-02106-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755891270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755891270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f463e6a30b0c953fd475a3926fec832918cac92fa9043353b0c3184869e232073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsFb_gKeA57WTZL9ylOIXFDyoFy9hmk3a1N1NTXZr69FfbrSCNw9DBvK8L8yTJOcULilAOQmU5aJKgbE4FIp0e5CMaFWUaUmr_DDuADSFnNHj5CSEFUCWFQWMks-pm7x0aat7bIjzC-ysIsZjq9-dfw2k1t5udE3M0Kneui5SLfbebolxniztYtnsCMavjSbYOr9euiGQR01Cj3Pb2A_8ThHsaoL1BjsVuxrbL-3QRsR5XOjT5MhgE_TZ7ztOnm-un6Z36ezh9n56NUsVp6JPTVZwXSCHOSiRc1NnZY5csMJoVXEmaKVQCWZQQMZ5ziPGaZVVhdCMMyj5OLnY9669ext06OXKDT5eFCQr87wSlJUQKbanlHcheG3k2tsW_U5SkN-u5d61jK7lj2u5jSG-D4UIdwvt_6r_SX0BKnaEPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755891270</pqid></control><display><type>article</type><title>Co/Zn-metal organic frameworks derived functional matrix for highly active amorphous Se stabilization and advanced lithium storage</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Hong ; Kang, Jin-Zhao ; Huang, Long-Sheng ; Wang, Jin-Jin ; Wang, Xiao-Mei ; Zhao, Xiang-Yuan ; Du, Cheng-Feng</creator><creatorcontrib>Yu, Hong ; Kang, Jin-Zhao ; Huang, Long-Sheng ; Wang, Jin-Jin ; Wang, Xiao-Mei ; Zhao, Xiang-Yuan ; Du, Cheng-Feng</creatorcontrib><description>Lithium–selenium batteries, as an advanced rechargeable battery system, have attracted wide attention. However, its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials. Herein, a three-dimensional (3D) functional matrix derived from the Co/Zn-metal organic framework is synthesized to unravel the questions raised. It reveals that the strong interaction and voids in the 3D matrix serve to anchor the amorphous Se with high electrochemical properties. The obtained 3DC/Se exhibits 544.2 and 273.2 mAh·g −1 at current densities of 0.1C and 2.0C, respectively, with a diffusion-controlled mechanism. The excessive amount of Se beyond the loading capacity of the matrix leads to the formation of trigonal phase Se, which shows an unsatisfying electrochemical property. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02106-x</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Cobalt ; Electrochemical analysis ; Energy ; Lithium ; Materials Engineering ; Materials Science ; Metal-organic frameworks ; Metallic Materials ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Rechargeable batteries ; Selenium ; Storage batteries ; Strong interactions (field theory) ; Zinc</subject><ispartof>Rare metals, 2023, Vol.42 (1), p.76-84</ispartof><rights>Youke Publishing Co.,Ltd 2022</rights><rights>Youke Publishing Co.,Ltd 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f463e6a30b0c953fd475a3926fec832918cac92fa9043353b0c3184869e232073</citedby><cites>FETCH-LOGICAL-c319t-f463e6a30b0c953fd475a3926fec832918cac92fa9043353b0c3184869e232073</cites><orcidid>0000-0002-1253-3475 ; 0000-0002-5598-476X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02106-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02106-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Kang, Jin-Zhao</creatorcontrib><creatorcontrib>Huang, Long-Sheng</creatorcontrib><creatorcontrib>Wang, Jin-Jin</creatorcontrib><creatorcontrib>Wang, Xiao-Mei</creatorcontrib><creatorcontrib>Zhao, Xiang-Yuan</creatorcontrib><creatorcontrib>Du, Cheng-Feng</creatorcontrib><title>Co/Zn-metal organic frameworks derived functional matrix for highly active amorphous Se stabilization and advanced lithium storage</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Lithium–selenium batteries, as an advanced rechargeable battery system, have attracted wide attention. However, its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials. Herein, a three-dimensional (3D) functional matrix derived from the Co/Zn-metal organic framework is synthesized to unravel the questions raised. It reveals that the strong interaction and voids in the 3D matrix serve to anchor the amorphous Se with high electrochemical properties. The obtained 3DC/Se exhibits 544.2 and 273.2 mAh·g −1 at current densities of 0.1C and 2.0C, respectively, with a diffusion-controlled mechanism. The excessive amount of Se beyond the loading capacity of the matrix leads to the formation of trigonal phase Se, which shows an unsatisfying electrochemical property. Graphical abstract</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Electrochemical analysis</subject><subject>Energy</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metal-organic frameworks</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Rechargeable batteries</subject><subject>Selenium</subject><subject>Storage batteries</subject><subject>Strong interactions (field theory)</subject><subject>Zinc</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhhdRsFb_gKeA57WTZL9ylOIXFDyoFy9hmk3a1N1NTXZr69FfbrSCNw9DBvK8L8yTJOcULilAOQmU5aJKgbE4FIp0e5CMaFWUaUmr_DDuADSFnNHj5CSEFUCWFQWMks-pm7x0aat7bIjzC-ysIsZjq9-dfw2k1t5udE3M0Kneui5SLfbebolxniztYtnsCMavjSbYOr9euiGQR01Cj3Pb2A_8ThHsaoL1BjsVuxrbL-3QRsR5XOjT5MhgE_TZ7ztOnm-un6Z36ezh9n56NUsVp6JPTVZwXSCHOSiRc1NnZY5csMJoVXEmaKVQCWZQQMZ5ziPGaZVVhdCMMyj5OLnY9669ext06OXKDT5eFCQr87wSlJUQKbanlHcheG3k2tsW_U5SkN-u5d61jK7lj2u5jSG-D4UIdwvt_6r_SX0BKnaEPg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Yu, Hong</creator><creator>Kang, Jin-Zhao</creator><creator>Huang, Long-Sheng</creator><creator>Wang, Jin-Jin</creator><creator>Wang, Xiao-Mei</creator><creator>Zhao, Xiang-Yuan</creator><creator>Du, Cheng-Feng</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1253-3475</orcidid><orcidid>https://orcid.org/0000-0002-5598-476X</orcidid></search><sort><creationdate>2023</creationdate><title>Co/Zn-metal organic frameworks derived functional matrix for highly active amorphous Se stabilization and advanced lithium storage</title><author>Yu, Hong ; Kang, Jin-Zhao ; Huang, Long-Sheng ; Wang, Jin-Jin ; Wang, Xiao-Mei ; Zhao, Xiang-Yuan ; Du, Cheng-Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f463e6a30b0c953fd475a3926fec832918cac92fa9043353b0c3184869e232073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Electrochemical analysis</topic><topic>Energy</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metal-organic frameworks</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Rechargeable batteries</topic><topic>Selenium</topic><topic>Storage batteries</topic><topic>Strong interactions (field theory)</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Hong</creatorcontrib><creatorcontrib>Kang, Jin-Zhao</creatorcontrib><creatorcontrib>Huang, Long-Sheng</creatorcontrib><creatorcontrib>Wang, Jin-Jin</creatorcontrib><creatorcontrib>Wang, Xiao-Mei</creatorcontrib><creatorcontrib>Zhao, Xiang-Yuan</creatorcontrib><creatorcontrib>Du, Cheng-Feng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Hong</au><au>Kang, Jin-Zhao</au><au>Huang, Long-Sheng</au><au>Wang, Jin-Jin</au><au>Wang, Xiao-Mei</au><au>Zhao, Xiang-Yuan</au><au>Du, Cheng-Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Co/Zn-metal organic frameworks derived functional matrix for highly active amorphous Se stabilization and advanced lithium storage</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2023</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><spage>76</spage><epage>84</epage><pages>76-84</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Lithium–selenium batteries, as an advanced rechargeable battery system, have attracted wide attention. However, its application is hurdled by the ambiguous underlying mechanism such as the unclear active phase and the key role of the host materials. Herein, a three-dimensional (3D) functional matrix derived from the Co/Zn-metal organic framework is synthesized to unravel the questions raised. It reveals that the strong interaction and voids in the 3D matrix serve to anchor the amorphous Se with high electrochemical properties. The obtained 3DC/Se exhibits 544.2 and 273.2 mAh·g −1 at current densities of 0.1C and 2.0C, respectively, with a diffusion-controlled mechanism. The excessive amount of Se beyond the loading capacity of the matrix leads to the formation of trigonal phase Se, which shows an unsatisfying electrochemical property. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02106-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1253-3475</orcidid><orcidid>https://orcid.org/0000-0002-5598-476X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2023, Vol.42 (1), p.76-84
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2755891270
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Biomaterials
Chemistry and Materials Science
Cobalt
Electrochemical analysis
Energy
Lithium
Materials Engineering
Materials Science
Metal-organic frameworks
Metallic Materials
Nanoscale Science and Technology
Original Article
Physical Chemistry
Rechargeable batteries
Selenium
Storage batteries
Strong interactions (field theory)
Zinc
title Co/Zn-metal organic frameworks derived functional matrix for highly active amorphous Se stabilization and advanced lithium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Co/Zn-metal%20organic%20frameworks%20derived%20functional%20matrix%20for%20highly%20active%20amorphous%20Se%20stabilization%20and%20advanced%20lithium%20storage&rft.jtitle=Rare%20metals&rft.au=Yu,%20Hong&rft.date=2023&rft.volume=42&rft.issue=1&rft.spage=76&rft.epage=84&rft.pages=76-84&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02106-x&rft_dat=%3Cproquest_cross%3E2755891270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755891270&rft_id=info:pmid/&rfr_iscdi=true