Adaptive dynamic programming‐based adaptive‐gain sliding mode tracking control for fixed‐wing unmanned aerial vehicle with disturbances

This article proposes an adaptive dynamic programming‐based adaptive‐gain sliding mode control (ADP‐ASMC) scheme for a fixed‐wing unmanned aerial vehicle (UAV) with matched and unmatched disturbances. Starting from the dynamic of fixed‐wing UAV, the control‐oriented model composed of attitude subsys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2023-01, Vol.33 (2), p.1065-1097
Hauptverfasser: Zhang, Chaofan, Zhang, Guoshan, Dong, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1097
container_issue 2
container_start_page 1065
container_title International journal of robust and nonlinear control
container_volume 33
creator Zhang, Chaofan
Zhang, Guoshan
Dong, Qi
description This article proposes an adaptive dynamic programming‐based adaptive‐gain sliding mode control (ADP‐ASMC) scheme for a fixed‐wing unmanned aerial vehicle (UAV) with matched and unmatched disturbances. Starting from the dynamic of fixed‐wing UAV, the control‐oriented model composed of attitude subsystem and airspeed subsystem is established. According to the different issues in two subsystems, two novel adaptive‐gain generalized super‐twisting (AGST) algorithms are developed to eliminate the effects of disturbances in two subsystems and make the system trajectories tend to the designed integral sliding manifolds in finite time. Then, based on the expected equivalent sliding‐mode dynamics, the modified adaptive dynamic programming approach with actor‐critic structure is utilized to generate the nearly optimal control laws and achieve the nearly optimal performance of the sliding‐mode dynamics. Furthermore, through the Lyapunov stability theorem, the tracking errors and the weight estimation errors of two neural networks are all uniformly ultimately bounded. Finally, comparative simulations demonstrate the superior performance of the proposed control scheme for the fixed‐wing UAV.
doi_str_mv 10.1002/rnc.6387
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755732625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755732625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2237-85d6a256c62d6844ed437cb192cc029e38842f5550cd0d0eba2d730ddb4fd0b63</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmaSSZzWZbiDYqC6DpkcjJt6kymJjPW7nwBwWf0SczYbl2dy__xH86P0HlMJjEh9MpZNUlZnh2gUUyKIoopKw6HPimivKDsGJ14vyIkaDQZoa8pyHVn3jWGrZWNUXjt2oWTTWPs4ufzu5ReA5Z7KCwW0ljsawNBx00LGndOqtdhUq3tXFvjqnW4Mh8aAr4ZhN420trBRzsja_yul0bVGm9Mt8RgfNe7Ulql_Sk6qmTt9dm-jtHLzfXz7C6aP97ez6bzSFHKsijnkErKU5VSSPMk0ZCwTJVxQZUitNAszxNacc6JAgJEl5JCxghAmVRAypSN0cXONzz71mvfiVXbOxtOCppxnjGaUh6oyx2lXOu905VYO9NItxUxEUPYIoQthrADGu3Qjan19l9OPD3M_vhfCZ2GrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755732625</pqid></control><display><type>article</type><title>Adaptive dynamic programming‐based adaptive‐gain sliding mode tracking control for fixed‐wing unmanned aerial vehicle with disturbances</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Chaofan ; Zhang, Guoshan ; Dong, Qi</creator><creatorcontrib>Zhang, Chaofan ; Zhang, Guoshan ; Dong, Qi</creatorcontrib><description>This article proposes an adaptive dynamic programming‐based adaptive‐gain sliding mode control (ADP‐ASMC) scheme for a fixed‐wing unmanned aerial vehicle (UAV) with matched and unmatched disturbances. Starting from the dynamic of fixed‐wing UAV, the control‐oriented model composed of attitude subsystem and airspeed subsystem is established. According to the different issues in two subsystems, two novel adaptive‐gain generalized super‐twisting (AGST) algorithms are developed to eliminate the effects of disturbances in two subsystems and make the system trajectories tend to the designed integral sliding manifolds in finite time. Then, based on the expected equivalent sliding‐mode dynamics, the modified adaptive dynamic programming approach with actor‐critic structure is utilized to generate the nearly optimal control laws and achieve the nearly optimal performance of the sliding‐mode dynamics. Furthermore, through the Lyapunov stability theorem, the tracking errors and the weight estimation errors of two neural networks are all uniformly ultimately bounded. Finally, comparative simulations demonstrate the superior performance of the proposed control scheme for the fixed‐wing UAV.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6387</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; adaptive dynamic programming (ADP) ; adaptive‐gain sliding mode ; Algorithms ; Control theory ; disturbance ; Disturbances ; Dynamic programming ; Dynamic stability ; fixed‐wing UAV ; Mode tracking ; Neural networks ; Optimal control ; Sliding mode control ; Subsystems ; Tracking control ; Tracking errors ; Unmanned aerial vehicles</subject><ispartof>International journal of robust and nonlinear control, 2023-01, Vol.33 (2), p.1065-1097</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2237-85d6a256c62d6844ed437cb192cc029e38842f5550cd0d0eba2d730ddb4fd0b63</citedby><cites>FETCH-LOGICAL-c2237-85d6a256c62d6844ed437cb192cc029e38842f5550cd0d0eba2d730ddb4fd0b63</cites><orcidid>0000-0003-0994-5468 ; 0000-0002-1215-7588 ; 0000-0001-8641-0913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.6387$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.6387$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhang, Chaofan</creatorcontrib><creatorcontrib>Zhang, Guoshan</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><title>Adaptive dynamic programming‐based adaptive‐gain sliding mode tracking control for fixed‐wing unmanned aerial vehicle with disturbances</title><title>International journal of robust and nonlinear control</title><description>This article proposes an adaptive dynamic programming‐based adaptive‐gain sliding mode control (ADP‐ASMC) scheme for a fixed‐wing unmanned aerial vehicle (UAV) with matched and unmatched disturbances. Starting from the dynamic of fixed‐wing UAV, the control‐oriented model composed of attitude subsystem and airspeed subsystem is established. According to the different issues in two subsystems, two novel adaptive‐gain generalized super‐twisting (AGST) algorithms are developed to eliminate the effects of disturbances in two subsystems and make the system trajectories tend to the designed integral sliding manifolds in finite time. Then, based on the expected equivalent sliding‐mode dynamics, the modified adaptive dynamic programming approach with actor‐critic structure is utilized to generate the nearly optimal control laws and achieve the nearly optimal performance of the sliding‐mode dynamics. Furthermore, through the Lyapunov stability theorem, the tracking errors and the weight estimation errors of two neural networks are all uniformly ultimately bounded. Finally, comparative simulations demonstrate the superior performance of the proposed control scheme for the fixed‐wing UAV.</description><subject>Adaptive control</subject><subject>adaptive dynamic programming (ADP)</subject><subject>adaptive‐gain sliding mode</subject><subject>Algorithms</subject><subject>Control theory</subject><subject>disturbance</subject><subject>Disturbances</subject><subject>Dynamic programming</subject><subject>Dynamic stability</subject><subject>fixed‐wing UAV</subject><subject>Mode tracking</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Sliding mode control</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Unmanned aerial vehicles</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJmaSSZzWZbiDYqC6DpkcjJt6kymJjPW7nwBwWf0SczYbl2dy__xH86P0HlMJjEh9MpZNUlZnh2gUUyKIoopKw6HPimivKDsGJ14vyIkaDQZoa8pyHVn3jWGrZWNUXjt2oWTTWPs4ufzu5ReA5Z7KCwW0ljsawNBx00LGndOqtdhUq3tXFvjqnW4Mh8aAr4ZhN420trBRzsja_yul0bVGm9Mt8RgfNe7Ulql_Sk6qmTt9dm-jtHLzfXz7C6aP97ez6bzSFHKsijnkErKU5VSSPMk0ZCwTJVxQZUitNAszxNacc6JAgJEl5JCxghAmVRAypSN0cXONzz71mvfiVXbOxtOCppxnjGaUh6oyx2lXOu905VYO9NItxUxEUPYIoQthrADGu3Qjan19l9OPD3M_vhfCZ2GrA</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Zhang, Chaofan</creator><creator>Zhang, Guoshan</creator><creator>Dong, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0994-5468</orcidid><orcidid>https://orcid.org/0000-0002-1215-7588</orcidid><orcidid>https://orcid.org/0000-0001-8641-0913</orcidid></search><sort><creationdate>20230125</creationdate><title>Adaptive dynamic programming‐based adaptive‐gain sliding mode tracking control for fixed‐wing unmanned aerial vehicle with disturbances</title><author>Zhang, Chaofan ; Zhang, Guoshan ; Dong, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2237-85d6a256c62d6844ed437cb192cc029e38842f5550cd0d0eba2d730ddb4fd0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>adaptive dynamic programming (ADP)</topic><topic>adaptive‐gain sliding mode</topic><topic>Algorithms</topic><topic>Control theory</topic><topic>disturbance</topic><topic>Disturbances</topic><topic>Dynamic programming</topic><topic>Dynamic stability</topic><topic>fixed‐wing UAV</topic><topic>Mode tracking</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Sliding mode control</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chaofan</creatorcontrib><creatorcontrib>Zhang, Guoshan</creatorcontrib><creatorcontrib>Dong, Qi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chaofan</au><au>Zhang, Guoshan</au><au>Dong, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive dynamic programming‐based adaptive‐gain sliding mode tracking control for fixed‐wing unmanned aerial vehicle with disturbances</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2023-01-25</date><risdate>2023</risdate><volume>33</volume><issue>2</issue><spage>1065</spage><epage>1097</epage><pages>1065-1097</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article proposes an adaptive dynamic programming‐based adaptive‐gain sliding mode control (ADP‐ASMC) scheme for a fixed‐wing unmanned aerial vehicle (UAV) with matched and unmatched disturbances. Starting from the dynamic of fixed‐wing UAV, the control‐oriented model composed of attitude subsystem and airspeed subsystem is established. According to the different issues in two subsystems, two novel adaptive‐gain generalized super‐twisting (AGST) algorithms are developed to eliminate the effects of disturbances in two subsystems and make the system trajectories tend to the designed integral sliding manifolds in finite time. Then, based on the expected equivalent sliding‐mode dynamics, the modified adaptive dynamic programming approach with actor‐critic structure is utilized to generate the nearly optimal control laws and achieve the nearly optimal performance of the sliding‐mode dynamics. Furthermore, through the Lyapunov stability theorem, the tracking errors and the weight estimation errors of two neural networks are all uniformly ultimately bounded. Finally, comparative simulations demonstrate the superior performance of the proposed control scheme for the fixed‐wing UAV.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6387</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-0994-5468</orcidid><orcidid>https://orcid.org/0000-0002-1215-7588</orcidid><orcidid>https://orcid.org/0000-0001-8641-0913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2023-01, Vol.33 (2), p.1065-1097
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2755732625
source Wiley Online Library Journals Frontfile Complete
subjects Adaptive control
adaptive dynamic programming (ADP)
adaptive‐gain sliding mode
Algorithms
Control theory
disturbance
Disturbances
Dynamic programming
Dynamic stability
fixed‐wing UAV
Mode tracking
Neural networks
Optimal control
Sliding mode control
Subsystems
Tracking control
Tracking errors
Unmanned aerial vehicles
title Adaptive dynamic programming‐based adaptive‐gain sliding mode tracking control for fixed‐wing unmanned aerial vehicle with disturbances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20dynamic%20programming%E2%80%90based%20adaptive%E2%80%90gain%20sliding%20mode%20tracking%20control%20for%20fixed%E2%80%90wing%20unmanned%20aerial%20vehicle%20with%20disturbances&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Zhang,%20Chaofan&rft.date=2023-01-25&rft.volume=33&rft.issue=2&rft.spage=1065&rft.epage=1097&rft.pages=1065-1097&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6387&rft_dat=%3Cproquest_cross%3E2755732625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755732625&rft_id=info:pmid/&rfr_iscdi=true