Statistical Design and Analysis for Robust Machine Learning: A Case Study from COVID-19

Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Pigoli, Davide, Baker, Kieran, Budd, Jobie, Butler, Lorraine, Coppock, Harry, Egglestone, Sabrina, Gilmour, Steven G, Holmes, Chris, Hurley, David, Jersakova, Radka, Kiskin, Ivan, Koutra, Vasiliki, Mellor, Jonathon, Nicholson, George, Packham, Joe, Patel, Selina, Payne, Richard, Roberts, Stephen J, Schuller, Björn W, Tendero-Cañadas, Ana, Thornley, Tracey, Titcomb, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pigoli, Davide
Baker, Kieran
Budd, Jobie
Butler, Lorraine
Coppock, Harry
Egglestone, Sabrina
Gilmour, Steven G
Holmes, Chris
Hurley, David
Jersakova, Radka
Kiskin, Ivan
Koutra, Vasiliki
Mellor, Jonathon
Nicholson, George
Packham, Joe
Patel, Selina
Payne, Richard
Roberts, Stephen J
Schuller, Björn W
Tendero-Cañadas, Ana
Thornley, Tracey
Titcomb, Alexander
description Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2755693450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755693450</sourcerecordid><originalsourceid>FETCH-proquest_journals_27556934503</originalsourceid><addsrcrecordid>eNqNzb0KwjAUQOEgCBb1HS44F9Kk8W8rVVFQBCs6SmxTjdREc5Ohb6-DD-B0lg9Oh0SM8ySepoz1yBDxQSll4wkTgkfkXHjpNXpdygYWCvXNgDQVZEY2LWqE2jo42GtADztZ3rVRsFXSGW1uc8ggl6ig8KFqoXb2Cfn-tFnEyWxAurVsUA1_7ZPRannM1_HL2XdQ6C8PG9x3ghc2EWI846mg_D_1AXq0P4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755693450</pqid></control><display><type>article</type><title>Statistical Design and Analysis for Robust Machine Learning: A Case Study from COVID-19</title><source>Free E- Journals</source><creator>Pigoli, Davide ; Baker, Kieran ; Budd, Jobie ; Butler, Lorraine ; Coppock, Harry ; Egglestone, Sabrina ; Gilmour, Steven G ; Holmes, Chris ; Hurley, David ; Jersakova, Radka ; Kiskin, Ivan ; Koutra, Vasiliki ; Mellor, Jonathon ; Nicholson, George ; Packham, Joe ; Patel, Selina ; Payne, Richard ; Roberts, Stephen J ; Schuller, Björn W ; Tendero-Cañadas, Ana ; Thornley, Tracey ; Titcomb, Alexander</creator><creatorcontrib>Pigoli, Davide ; Baker, Kieran ; Budd, Jobie ; Butler, Lorraine ; Coppock, Harry ; Egglestone, Sabrina ; Gilmour, Steven G ; Holmes, Chris ; Hurley, David ; Jersakova, Radka ; Kiskin, Ivan ; Koutra, Vasiliki ; Mellor, Jonathon ; Nicholson, George ; Packham, Joe ; Patel, Selina ; Payne, Richard ; Roberts, Stephen J ; Schuller, Björn W ; Tendero-Cañadas, Ana ; Thornley, Tracey ; Titcomb, Alexander</creatorcontrib><description>Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Audio signals ; Data collection ; Datasets ; Machine learning ; Prediction models ; Public health ; Viral diseases</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pigoli, Davide</creatorcontrib><creatorcontrib>Baker, Kieran</creatorcontrib><creatorcontrib>Budd, Jobie</creatorcontrib><creatorcontrib>Butler, Lorraine</creatorcontrib><creatorcontrib>Coppock, Harry</creatorcontrib><creatorcontrib>Egglestone, Sabrina</creatorcontrib><creatorcontrib>Gilmour, Steven G</creatorcontrib><creatorcontrib>Holmes, Chris</creatorcontrib><creatorcontrib>Hurley, David</creatorcontrib><creatorcontrib>Jersakova, Radka</creatorcontrib><creatorcontrib>Kiskin, Ivan</creatorcontrib><creatorcontrib>Koutra, Vasiliki</creatorcontrib><creatorcontrib>Mellor, Jonathon</creatorcontrib><creatorcontrib>Nicholson, George</creatorcontrib><creatorcontrib>Packham, Joe</creatorcontrib><creatorcontrib>Patel, Selina</creatorcontrib><creatorcontrib>Payne, Richard</creatorcontrib><creatorcontrib>Roberts, Stephen J</creatorcontrib><creatorcontrib>Schuller, Björn W</creatorcontrib><creatorcontrib>Tendero-Cañadas, Ana</creatorcontrib><creatorcontrib>Thornley, Tracey</creatorcontrib><creatorcontrib>Titcomb, Alexander</creatorcontrib><title>Statistical Design and Analysis for Robust Machine Learning: A Case Study from COVID-19</title><title>arXiv.org</title><description>Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.</description><subject>Artificial intelligence</subject><subject>Audio signals</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Public health</subject><subject>Viral diseases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzb0KwjAUQOEgCBb1HS44F9Kk8W8rVVFQBCs6SmxTjdREc5Ohb6-DD-B0lg9Oh0SM8ySepoz1yBDxQSll4wkTgkfkXHjpNXpdygYWCvXNgDQVZEY2LWqE2jo42GtADztZ3rVRsFXSGW1uc8ggl6ig8KFqoXb2Cfn-tFnEyWxAurVsUA1_7ZPRannM1_HL2XdQ6C8PG9x3ghc2EWI846mg_D_1AXq0P4k</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Pigoli, Davide</creator><creator>Baker, Kieran</creator><creator>Budd, Jobie</creator><creator>Butler, Lorraine</creator><creator>Coppock, Harry</creator><creator>Egglestone, Sabrina</creator><creator>Gilmour, Steven G</creator><creator>Holmes, Chris</creator><creator>Hurley, David</creator><creator>Jersakova, Radka</creator><creator>Kiskin, Ivan</creator><creator>Koutra, Vasiliki</creator><creator>Mellor, Jonathon</creator><creator>Nicholson, George</creator><creator>Packham, Joe</creator><creator>Patel, Selina</creator><creator>Payne, Richard</creator><creator>Roberts, Stephen J</creator><creator>Schuller, Björn W</creator><creator>Tendero-Cañadas, Ana</creator><creator>Thornley, Tracey</creator><creator>Titcomb, Alexander</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230227</creationdate><title>Statistical Design and Analysis for Robust Machine Learning: A Case Study from COVID-19</title><author>Pigoli, Davide ; Baker, Kieran ; Budd, Jobie ; Butler, Lorraine ; Coppock, Harry ; Egglestone, Sabrina ; Gilmour, Steven G ; Holmes, Chris ; Hurley, David ; Jersakova, Radka ; Kiskin, Ivan ; Koutra, Vasiliki ; Mellor, Jonathon ; Nicholson, George ; Packham, Joe ; Patel, Selina ; Payne, Richard ; Roberts, Stephen J ; Schuller, Björn W ; Tendero-Cañadas, Ana ; Thornley, Tracey ; Titcomb, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27556934503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Audio signals</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Public health</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Pigoli, Davide</creatorcontrib><creatorcontrib>Baker, Kieran</creatorcontrib><creatorcontrib>Budd, Jobie</creatorcontrib><creatorcontrib>Butler, Lorraine</creatorcontrib><creatorcontrib>Coppock, Harry</creatorcontrib><creatorcontrib>Egglestone, Sabrina</creatorcontrib><creatorcontrib>Gilmour, Steven G</creatorcontrib><creatorcontrib>Holmes, Chris</creatorcontrib><creatorcontrib>Hurley, David</creatorcontrib><creatorcontrib>Jersakova, Radka</creatorcontrib><creatorcontrib>Kiskin, Ivan</creatorcontrib><creatorcontrib>Koutra, Vasiliki</creatorcontrib><creatorcontrib>Mellor, Jonathon</creatorcontrib><creatorcontrib>Nicholson, George</creatorcontrib><creatorcontrib>Packham, Joe</creatorcontrib><creatorcontrib>Patel, Selina</creatorcontrib><creatorcontrib>Payne, Richard</creatorcontrib><creatorcontrib>Roberts, Stephen J</creatorcontrib><creatorcontrib>Schuller, Björn W</creatorcontrib><creatorcontrib>Tendero-Cañadas, Ana</creatorcontrib><creatorcontrib>Thornley, Tracey</creatorcontrib><creatorcontrib>Titcomb, Alexander</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pigoli, Davide</au><au>Baker, Kieran</au><au>Budd, Jobie</au><au>Butler, Lorraine</au><au>Coppock, Harry</au><au>Egglestone, Sabrina</au><au>Gilmour, Steven G</au><au>Holmes, Chris</au><au>Hurley, David</au><au>Jersakova, Radka</au><au>Kiskin, Ivan</au><au>Koutra, Vasiliki</au><au>Mellor, Jonathon</au><au>Nicholson, George</au><au>Packham, Joe</au><au>Patel, Selina</au><au>Payne, Richard</au><au>Roberts, Stephen J</au><au>Schuller, Björn W</au><au>Tendero-Cañadas, Ana</au><au>Thornley, Tracey</au><au>Titcomb, Alexander</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Statistical Design and Analysis for Robust Machine Learning: A Case Study from COVID-19</atitle><jtitle>arXiv.org</jtitle><date>2023-02-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Since early in the coronavirus disease 2019 (COVID-19) pandemic, there has been interest in using artificial intelligence methods to predict COVID-19 infection status based on vocal audio signals, for example cough recordings. However, existing studies have limitations in terms of data collection and of the assessment of the performances of the proposed predictive models. This paper rigorously assesses state-of-the-art machine learning techniques used to predict COVID-19 infection status based on vocal audio signals, using a dataset collected by the UK Health Security Agency. This dataset includes acoustic recordings and extensive study participant meta-data. We provide guidelines on testing the performance of methods to classify COVID-19 infection status based on acoustic features and we discuss how these can be extended more generally to the development and assessment of predictive methods based on public health datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2755693450
source Free E- Journals
subjects Artificial intelligence
Audio signals
Data collection
Datasets
Machine learning
Prediction models
Public health
Viral diseases
title Statistical Design and Analysis for Robust Machine Learning: A Case Study from COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Statistical%20Design%20and%20Analysis%20for%20Robust%20Machine%20Learning:%20A%20Case%20Study%20from%20COVID-19&rft.jtitle=arXiv.org&rft.au=Pigoli,%20Davide&rft.date=2023-02-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2755693450%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755693450&rft_id=info:pmid/&rfr_iscdi=true