Tumor purity predicted by statistical methods

Cancer is one of the major health problems for human and patients with advanced stage cancer have ultra-low 5-year survival rate. Therefore, improving early cancer detection accuracy rate is necessary. The measurement of tumor purity plays an important role in the early diagnosis of cancer and the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Zhu, Zhaohan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2589
creator Zhu, Zhaohan
description Cancer is one of the major health problems for human and patients with advanced stage cancer have ultra-low 5-year survival rate. Therefore, improving early cancer detection accuracy rate is necessary. The measurement of tumor purity plays an important role in the early diagnosis of cancer and the tracking of patient’s condition. In addition, how to estimate tumor purity accurately is also a significant biological problem. Predicting tumor purity based on DNA methylation is a prevalent method. In this article, we discuss using different linear regression models to estimate tumor purity. Two main questions need to be solved to accurately estimate tumor purity. We first discussed the features selection methods in biological and mathematical aspect which reduce the collinearity between cell types and make deconvolution more stable. In addition, we also compared 4 different linear regression model usually used in this question and analyzed their advantages and disadvantages respectively.
doi_str_mv 10.1063/5.0113053
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2755658969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755658969</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1683-50fb7748bdfba1c59c191e46452781ef90cbd1fe9c1b660d5b272a0b8b8120423</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMouFYP_oMFb0Lq-yabr6MUrULBSwVvYZPN4pZud02yh_57t7SngeFhZhhCHhGWCJK_iCUgchD8ihQoBFIlUV6TAsBUlFX855bcpbQDYEYpXRC6nfohluMUu3wsxxiazufQlO5YplznLuXO1_uyD_l3aNI9uWnrfQoPF12Q7_e37eqDbr7Wn6vXDR1Rak4FtE6pSrumdTV6YTwaDJWsBFMaQ2vAuwbbMPtOSmiEY4rV4LTTyKBifEGezrljHP6mkLLdDVM8zJWWKSGk0EaamXo-U8l3p63DwY6x6-t4tAj2dIcV9nIH_wd6flBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2755658969</pqid></control><display><type>conference_proceeding</type><title>Tumor purity predicted by statistical methods</title><source>AIP Journals Complete</source><creator>Zhu, Zhaohan</creator><contributor>Yang, Lingyan ; Li, Lina</contributor><creatorcontrib>Zhu, Zhaohan ; Yang, Lingyan ; Li, Lina</creatorcontrib><description>Cancer is one of the major health problems for human and patients with advanced stage cancer have ultra-low 5-year survival rate. Therefore, improving early cancer detection accuracy rate is necessary. The measurement of tumor purity plays an important role in the early diagnosis of cancer and the tracking of patient’s condition. In addition, how to estimate tumor purity accurately is also a significant biological problem. Predicting tumor purity based on DNA methylation is a prevalent method. In this article, we discuss using different linear regression models to estimate tumor purity. Two main questions need to be solved to accurately estimate tumor purity. We first discussed the features selection methods in biological and mathematical aspect which reduce the collinearity between cell types and make deconvolution more stable. In addition, we also compared 4 different linear regression model usually used in this question and analyzed their advantages and disadvantages respectively.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0113053</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Cancer ; Collinearity ; Purity ; Questions ; Regression models ; Statistical analysis ; Statistical methods ; Tumors</subject><ispartof>AIP conference proceedings, 2022, Vol.2589 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0113053$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,791,4498,23911,23912,25121,27905,27906,76133</link.rule.ids></links><search><contributor>Yang, Lingyan</contributor><contributor>Li, Lina</contributor><creatorcontrib>Zhu, Zhaohan</creatorcontrib><title>Tumor purity predicted by statistical methods</title><title>AIP conference proceedings</title><description>Cancer is one of the major health problems for human and patients with advanced stage cancer have ultra-low 5-year survival rate. Therefore, improving early cancer detection accuracy rate is necessary. The measurement of tumor purity plays an important role in the early diagnosis of cancer and the tracking of patient’s condition. In addition, how to estimate tumor purity accurately is also a significant biological problem. Predicting tumor purity based on DNA methylation is a prevalent method. In this article, we discuss using different linear regression models to estimate tumor purity. Two main questions need to be solved to accurately estimate tumor purity. We first discussed the features selection methods in biological and mathematical aspect which reduce the collinearity between cell types and make deconvolution more stable. In addition, we also compared 4 different linear regression model usually used in this question and analyzed their advantages and disadvantages respectively.</description><subject>Cancer</subject><subject>Collinearity</subject><subject>Purity</subject><subject>Questions</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Tumors</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkE1LAzEYhIMouFYP_oMFb0Lq-yabr6MUrULBSwVvYZPN4pZud02yh_57t7SngeFhZhhCHhGWCJK_iCUgchD8ihQoBFIlUV6TAsBUlFX855bcpbQDYEYpXRC6nfohluMUu3wsxxiazufQlO5YplznLuXO1_uyD_l3aNI9uWnrfQoPF12Q7_e37eqDbr7Wn6vXDR1Rak4FtE6pSrumdTV6YTwaDJWsBFMaQ2vAuwbbMPtOSmiEY4rV4LTTyKBifEGezrljHP6mkLLdDVM8zJWWKSGk0EaamXo-U8l3p63DwY6x6-t4tAj2dIcV9nIH_wd6flBf</recordid><startdate>20221219</startdate><enddate>20221219</enddate><creator>Zhu, Zhaohan</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221219</creationdate><title>Tumor purity predicted by statistical methods</title><author>Zhu, Zhaohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1683-50fb7748bdfba1c59c191e46452781ef90cbd1fe9c1b660d5b272a0b8b8120423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>Collinearity</topic><topic>Purity</topic><topic>Questions</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhaohan</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhaohan</au><au>Yang, Lingyan</au><au>Li, Lina</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tumor purity predicted by statistical methods</atitle><btitle>AIP conference proceedings</btitle><date>2022-12-19</date><risdate>2022</risdate><volume>2589</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Cancer is one of the major health problems for human and patients with advanced stage cancer have ultra-low 5-year survival rate. Therefore, improving early cancer detection accuracy rate is necessary. The measurement of tumor purity plays an important role in the early diagnosis of cancer and the tracking of patient’s condition. In addition, how to estimate tumor purity accurately is also a significant biological problem. Predicting tumor purity based on DNA methylation is a prevalent method. In this article, we discuss using different linear regression models to estimate tumor purity. Two main questions need to be solved to accurately estimate tumor purity. We first discussed the features selection methods in biological and mathematical aspect which reduce the collinearity between cell types and make deconvolution more stable. In addition, we also compared 4 different linear regression model usually used in this question and analyzed their advantages and disadvantages respectively.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0113053</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2022, Vol.2589 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2755658969
source AIP Journals Complete
subjects Cancer
Collinearity
Purity
Questions
Regression models
Statistical analysis
Statistical methods
Tumors
title Tumor purity predicted by statistical methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tumor%20purity%20predicted%20by%20statistical%20methods&rft.btitle=AIP%20conference%20proceedings&rft.au=Zhu,%20Zhaohan&rft.date=2022-12-19&rft.volume=2589&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0113053&rft_dat=%3Cproquest_scita%3E2755658969%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755658969&rft_id=info:pmid/&rfr_iscdi=true