Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli

The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-12, Vol.94 (48), p.16796-16802
Hauptverfasser: Zhang, Jing Jing, Nie, Chao, Fu, Wen Long, Cheng, Feng Li, Chen, Pu, Gao, Zhong Feng, Wu, Yongning, Shen, Yizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16802
container_issue 48
container_start_page 16796
container_title Analytical chemistry (Washington)
container_volume 94
creator Zhang, Jing Jing
Nie, Chao
Fu, Wen Long
Cheng, Feng Li
Chen, Pu
Gao, Zhong Feng
Wu, Yongning
Shen, Yizhong
description The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor for achieving highly sensitive monitoring of Escherichia coli (E. coli) in environmental media. In this design, E. coli could specifically bind with its recognition aptamer for initiating the RCA process on a magnetic bead (MB). Owing to the cleaving of UV irradiation toward photoresponsive DNA on MB, the RCA products were released to further hybridize with near-infrared excited Cu x S-modified DNA probes. As a result, the photothermal signal was enhanced by RCA, while the background was decreased by UV irradiation and magnetic separation. The correspondingly generated photothermal signals were unambiguously recorded on a smartphone, allowing for an E. coli assay with a low detection limit of 1.8 CFU/mL among the broad linear range from 5.0 to 5.0 × 105 CFU/mL. Significantly, this proposed biosensor has been successfully applied to monitor the fouling levels of E. coli in spring water samples with acceptable results. This study holds great prospects by integrating a RCA-driven photothermal amplification strategy into a smartphone to develop accurate, reliable, and efficient analytical platforms against pathogenic bacteria pollutions for safeguarding environmental health.
doi_str_mv 10.1021/acs.analchem.2c03714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755617341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755617341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-e389158d1e318176ed68ff115b1c79400cd932945ad49f19277228ad4af7743b3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhZYp3isZM4WZa2PKQWEK9t5DpO4yqJi50g8QX8Ni4tXbKyxrr3zOggdA5kCITClZBuKBpRyVLVQyoJ4xAeoD5ElARxktBD1CeEsIByQnroxLkVIQAE4mPUYzFLo5BCH30_laY1Vrm1aZz-VHjyMArmJteFVjmei2WjWi3xtRJ5MHJOu9Z_P5uq0s0Sj7WVlcKjel35vBStNk0wsR7T4HftOlHhX3xbKlv74UX5Hb5nCjx1_m6rZakFlqbSp-ioEJVTZ7t3gN5upq_ju2D2eHs_Hs0CwXjcBoolKURJDopBAjxWeZwUBUC0AMnTkBCZp4ymYSTyMC0gpZxTmvhBFJyHbMEG6HLLXVvz0SnXZivTWa_RZZRHUQycheBT4TYlrXHOqiJbW10L-5UByTb2M28_-7Of7ez72sUO3i1qle9Lf7p9gGwDm_p-8b_MH1KAlOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755617341</pqid></control><display><type>article</type><title>Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhang, Jing Jing ; Nie, Chao ; Fu, Wen Long ; Cheng, Feng Li ; Chen, Pu ; Gao, Zhong Feng ; Wu, Yongning ; Shen, Yizhong</creator><creatorcontrib>Zhang, Jing Jing ; Nie, Chao ; Fu, Wen Long ; Cheng, Feng Li ; Chen, Pu ; Gao, Zhong Feng ; Wu, Yongning ; Shen, Yizhong</creatorcontrib><description>The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor for achieving highly sensitive monitoring of Escherichia coli (E. coli) in environmental media. In this design, E. coli could specifically bind with its recognition aptamer for initiating the RCA process on a magnetic bead (MB). Owing to the cleaving of UV irradiation toward photoresponsive DNA on MB, the RCA products were released to further hybridize with near-infrared excited Cu x S-modified DNA probes. As a result, the photothermal signal was enhanced by RCA, while the background was decreased by UV irradiation and magnetic separation. The correspondingly generated photothermal signals were unambiguously recorded on a smartphone, allowing for an E. coli assay with a low detection limit of 1.8 CFU/mL among the broad linear range from 5.0 to 5.0 × 105 CFU/mL. Significantly, this proposed biosensor has been successfully applied to monitor the fouling levels of E. coli in spring water samples with acceptable results. This study holds great prospects by integrating a RCA-driven photothermal amplification strategy into a smartphone to develop accurate, reliable, and efficient analytical platforms against pathogenic bacteria pollutions for safeguarding environmental health.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c03714</identifier><identifier>PMID: 36395421</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amplification ; Aptamers ; Bacteria ; Biosensing Techniques - methods ; Biosensors ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA - genetics ; DNA probes ; E coli ; Environmental health ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Infections ; Humans ; Irradiation ; Limit of Detection ; Magnetic Phenomena ; Magnetic separation ; Nucleic Acid Amplification Techniques - methods ; Pollution abatement ; Pollution prevention ; Smartphones ; Spring water ; Ultraviolet radiation ; Water analysis ; Water sampling</subject><ispartof>Analytical chemistry (Washington), 2022-12, Vol.94 (48), p.16796-16802</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-e389158d1e318176ed68ff115b1c79400cd932945ad49f19277228ad4af7743b3</citedby><cites>FETCH-LOGICAL-a376t-e389158d1e318176ed68ff115b1c79400cd932945ad49f19277228ad4af7743b3</cites><orcidid>0000-0002-4667-6212 ; 0000-0001-6430-1302 ; 0000-0002-6706-8291 ; 0000-0002-4463-3729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c03714$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c03714$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36395421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing Jing</creatorcontrib><creatorcontrib>Nie, Chao</creatorcontrib><creatorcontrib>Fu, Wen Long</creatorcontrib><creatorcontrib>Cheng, Feng Li</creatorcontrib><creatorcontrib>Chen, Pu</creatorcontrib><creatorcontrib>Gao, Zhong Feng</creatorcontrib><creatorcontrib>Wu, Yongning</creatorcontrib><creatorcontrib>Shen, Yizhong</creatorcontrib><title>Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor for achieving highly sensitive monitoring of Escherichia coli (E. coli) in environmental media. In this design, E. coli could specifically bind with its recognition aptamer for initiating the RCA process on a magnetic bead (MB). Owing to the cleaving of UV irradiation toward photoresponsive DNA on MB, the RCA products were released to further hybridize with near-infrared excited Cu x S-modified DNA probes. As a result, the photothermal signal was enhanced by RCA, while the background was decreased by UV irradiation and magnetic separation. The correspondingly generated photothermal signals were unambiguously recorded on a smartphone, allowing for an E. coli assay with a low detection limit of 1.8 CFU/mL among the broad linear range from 5.0 to 5.0 × 105 CFU/mL. Significantly, this proposed biosensor has been successfully applied to monitor the fouling levels of E. coli in spring water samples with acceptable results. This study holds great prospects by integrating a RCA-driven photothermal amplification strategy into a smartphone to develop accurate, reliable, and efficient analytical platforms against pathogenic bacteria pollutions for safeguarding environmental health.</description><subject>Amplification</subject><subject>Aptamers</subject><subject>Bacteria</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA probes</subject><subject>E coli</subject><subject>Environmental health</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Infections</subject><subject>Humans</subject><subject>Irradiation</subject><subject>Limit of Detection</subject><subject>Magnetic Phenomena</subject><subject>Magnetic separation</subject><subject>Nucleic Acid Amplification Techniques - methods</subject><subject>Pollution abatement</subject><subject>Pollution prevention</subject><subject>Smartphones</subject><subject>Spring water</subject><subject>Ultraviolet radiation</subject><subject>Water analysis</subject><subject>Water sampling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhZYp3isZM4WZa2PKQWEK9t5DpO4yqJi50g8QX8Ni4tXbKyxrr3zOggdA5kCITClZBuKBpRyVLVQyoJ4xAeoD5ElARxktBD1CeEsIByQnroxLkVIQAE4mPUYzFLo5BCH30_laY1Vrm1aZz-VHjyMArmJteFVjmei2WjWi3xtRJ5MHJOu9Z_P5uq0s0Sj7WVlcKjel35vBStNk0wsR7T4HftOlHhX3xbKlv74UX5Hb5nCjx1_m6rZakFlqbSp-ioEJVTZ7t3gN5upq_ju2D2eHs_Hs0CwXjcBoolKURJDopBAjxWeZwUBUC0AMnTkBCZp4ymYSTyMC0gpZxTmvhBFJyHbMEG6HLLXVvz0SnXZivTWa_RZZRHUQycheBT4TYlrXHOqiJbW10L-5UByTb2M28_-7Of7ez72sUO3i1qle9Lf7p9gGwDm_p-8b_MH1KAlOU</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Zhang, Jing Jing</creator><creator>Nie, Chao</creator><creator>Fu, Wen Long</creator><creator>Cheng, Feng Li</creator><creator>Chen, Pu</creator><creator>Gao, Zhong Feng</creator><creator>Wu, Yongning</creator><creator>Shen, Yizhong</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4667-6212</orcidid><orcidid>https://orcid.org/0000-0001-6430-1302</orcidid><orcidid>https://orcid.org/0000-0002-6706-8291</orcidid><orcidid>https://orcid.org/0000-0002-4463-3729</orcidid></search><sort><creationdate>20221206</creationdate><title>Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli</title><author>Zhang, Jing Jing ; Nie, Chao ; Fu, Wen Long ; Cheng, Feng Li ; Chen, Pu ; Gao, Zhong Feng ; Wu, Yongning ; Shen, Yizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-e389158d1e318176ed68ff115b1c79400cd932945ad49f19277228ad4af7743b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplification</topic><topic>Aptamers</topic><topic>Bacteria</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA probes</topic><topic>E coli</topic><topic>Environmental health</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Infections</topic><topic>Humans</topic><topic>Irradiation</topic><topic>Limit of Detection</topic><topic>Magnetic Phenomena</topic><topic>Magnetic separation</topic><topic>Nucleic Acid Amplification Techniques - methods</topic><topic>Pollution abatement</topic><topic>Pollution prevention</topic><topic>Smartphones</topic><topic>Spring water</topic><topic>Ultraviolet radiation</topic><topic>Water analysis</topic><topic>Water sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing Jing</creatorcontrib><creatorcontrib>Nie, Chao</creatorcontrib><creatorcontrib>Fu, Wen Long</creatorcontrib><creatorcontrib>Cheng, Feng Li</creatorcontrib><creatorcontrib>Chen, Pu</creatorcontrib><creatorcontrib>Gao, Zhong Feng</creatorcontrib><creatorcontrib>Wu, Yongning</creatorcontrib><creatorcontrib>Shen, Yizhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing Jing</au><au>Nie, Chao</au><au>Fu, Wen Long</au><au>Cheng, Feng Li</au><au>Chen, Pu</au><au>Gao, Zhong Feng</au><au>Wu, Yongning</au><au>Shen, Yizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>94</volume><issue>48</issue><spage>16796</spage><epage>16802</epage><pages>16796-16802</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor for achieving highly sensitive monitoring of Escherichia coli (E. coli) in environmental media. In this design, E. coli could specifically bind with its recognition aptamer for initiating the RCA process on a magnetic bead (MB). Owing to the cleaving of UV irradiation toward photoresponsive DNA on MB, the RCA products were released to further hybridize with near-infrared excited Cu x S-modified DNA probes. As a result, the photothermal signal was enhanced by RCA, while the background was decreased by UV irradiation and magnetic separation. The correspondingly generated photothermal signals were unambiguously recorded on a smartphone, allowing for an E. coli assay with a low detection limit of 1.8 CFU/mL among the broad linear range from 5.0 to 5.0 × 105 CFU/mL. Significantly, this proposed biosensor has been successfully applied to monitor the fouling levels of E. coli in spring water samples with acceptable results. This study holds great prospects by integrating a RCA-driven photothermal amplification strategy into a smartphone to develop accurate, reliable, and efficient analytical platforms against pathogenic bacteria pollutions for safeguarding environmental health.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36395421</pmid><doi>10.1021/acs.analchem.2c03714</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4667-6212</orcidid><orcidid>https://orcid.org/0000-0001-6430-1302</orcidid><orcidid>https://orcid.org/0000-0002-6706-8291</orcidid><orcidid>https://orcid.org/0000-0002-4463-3729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-12, Vol.94 (48), p.16796-16802
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2755617341
source MEDLINE; American Chemical Society Journals
subjects Amplification
Aptamers
Bacteria
Biosensing Techniques - methods
Biosensors
Chemistry
Deoxyribonucleic acid
DNA
DNA - genetics
DNA probes
E coli
Environmental health
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Infections
Humans
Irradiation
Limit of Detection
Magnetic Phenomena
Magnetic separation
Nucleic Acid Amplification Techniques - methods
Pollution abatement
Pollution prevention
Smartphones
Spring water
Ultraviolet radiation
Water analysis
Water sampling
title Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoresponsive%20DNA-Modified%20Magnetic%20Bead-Assisted%20Rolling%20Circle%20Amplification-Driven%20Visual%20Photothermal%20Sensing%20of%20Escherichia%20coli&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Zhang,%20Jing%20Jing&rft.date=2022-12-06&rft.volume=94&rft.issue=48&rft.spage=16796&rft.epage=16802&rft.pages=16796-16802&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c03714&rft_dat=%3Cproquest_cross%3E2755617341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755617341&rft_id=info:pmid/36395421&rfr_iscdi=true