Simultaneous Execution of Dereverberation, Denoising, and Speaker Separation Using a Neural Beamformer for Adapting Robots to Real Environments
It remains challenging for robots to accurately perform sound source localization and speech recognition in a real environment with reverberation, noise, and the voices of multiple speakers. Accordingly, we propose “U-TasNet-Beam,” a speech extraction method for extracting only the target speaker’s...
Gespeichert in:
Veröffentlicht in: | Journal of robotics and mechatronics 2022-12, Vol.34 (6), p.1399-1410 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It remains challenging for robots to accurately perform sound source localization and speech recognition in a real environment with reverberation, noise, and the voices of multiple speakers. Accordingly, we propose “U-TasNet-Beam,” a speech extraction method for extracting only the target speaker’s voice from all ambient sounds in a real environment. U-TasNet-Beam is a neural beamformer comprising three elements: a neural network for removing reverberation and noise, a second neural network for separating the voices of multiple speakers, and a minimum variance distortionless response (MVDR) beamformer. Experiments with simulated data and recorded data show that the proposed U-TasNet-Beam can improve the accuracy of sound source localization and speech recognition in robots compared to the conventional methods in a noisy, reverberant, and multi-speaker environment. In addition, we propose the spatial correlation matrix loss (SCM loss) as a loss function for the neural network learning the spatial information of the sound. By using the SCM loss, we can improve the speech extraction performance of the neural beamformer. |
---|---|
ISSN: | 0915-3942 1883-8049 |
DOI: | 10.20965/jrm.2022.p1399 |