Extended Near‐Infrared Photovoltaic Responses of Perovskite Solar Cells by p‐Type Phthalocyanine Derivative

The absent photo‐response in near‐infrared (NIR) light (>800 nm) of lead‐based perovskite solar cells (PSCs) limits the further improvement of their power conversion efficiency (PCE). Here, a narrow bandgap p‐type phthalocyanine derivative (Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-12, Vol.32 (51), p.n/a
Hauptverfasser: Zhang, Zhenhu, Liu, Hongli, Wang, Shirong, Bao, Huayu, Zhang, Fei, Li, Xianggao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 51
container_start_page
container_title Advanced functional materials
container_volume 32
creator Zhang, Zhenhu
Liu, Hongli
Wang, Shirong
Bao, Huayu
Zhang, Fei
Li, Xianggao
description The absent photo‐response in near‐infrared (NIR) light (>800 nm) of lead‐based perovskite solar cells (PSCs) limits the further improvement of their power conversion efficiency (PCE). Here, a narrow bandgap p‐type phthalocyanine derivative (Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine –8TPAEPC) with NIR absorption is synthesized to extend the photovoltaic response of perovskite to 850 nm. After doping the 8TPAEPC into the perovskite photoactive layer, the perovskite crystal quality is improved, resulting in its good electrical conductivity and less surface defects. Furthermore, the molecules stacking on the grain boundaries construct the charge transportation paths, as well as the p–n bulk heterojunction with enhanced built‐in potential. The target PSCs are optimized with notably enhanced PCE from 20% up to 22.10%, and excellent stability that is over 80% of the initial level at 70–80% relative humidity can be maintained for more than 500 h, benefiting from the improved hydrophobicity of 8TPAEPC. In addition, 8TPAEPC also serves as a dopant‐free, highly carrier‐mobile, and moreover, NIR‐responsive hole transport layer (HTL) with boosted PCE of 20.42% that reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs. Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine (8TPAEPC) with high‐carrier mobility of 3.12 × 10−3 cm2 V−1 s−1 is synthesized to extend the photovoltaic response of perovskite to 850 nm. The target perovskite solar cells (PSCs9 are qualified with increased power conversion efficiency (PCE) from 20% to 22.10%. Meanwhile, PCE of the PSCs with 8TPAEPC dopant‐free hole transport layer (HTL) reaches 20.42%, which reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs.
doi_str_mv 10.1002/adfm.202208539
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755376884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755376884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-8180ed42b662941249a2f127b16a047d4795d0289bd1ceae9210d90e4b1d20e73</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqVw5WyJc4rtOHF8rPoDlQpUUCRulhNv1JQ0DnYayI1H4Bl5ElIVlSOn3ZXmm9WM510SPCAY02uls82AYkpxHAbiyOuRiER-gGl8fNjJy6l35twaY8J5wHqemXzUUGrQ6B6U_f78mpWZVba7FytTm8YUtcpT9AiuMqUDh0yGFmBN417zGtCTKZRFIygKh5IWVZ3Bsq2gg-uVKkzaqjIvAY3B5o2q8wbOvZNMFQ4ufmffe55OlqNbf_5wMxsN534aEC78mMQYNKNJFFHBCGVC0YxQnpBIYcY14yLUXTKRaJKCAkEJ1gIDS4imGHjQ9672vpU1b1twtVybrS27l5LyMAx4FMesUw32qtQa5yxksrL5RtlWEix3pcpdqfJQageIPfCeF9D-o5bD8fTuj_0BvmV94g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755376884</pqid></control><display><type>article</type><title>Extended Near‐Infrared Photovoltaic Responses of Perovskite Solar Cells by p‐Type Phthalocyanine Derivative</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Zhenhu ; Liu, Hongli ; Wang, Shirong ; Bao, Huayu ; Zhang, Fei ; Li, Xianggao</creator><creatorcontrib>Zhang, Zhenhu ; Liu, Hongli ; Wang, Shirong ; Bao, Huayu ; Zhang, Fei ; Li, Xianggao</creatorcontrib><description>The absent photo‐response in near‐infrared (NIR) light (&gt;800 nm) of lead‐based perovskite solar cells (PSCs) limits the further improvement of their power conversion efficiency (PCE). Here, a narrow bandgap p‐type phthalocyanine derivative (Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine –8TPAEPC) with NIR absorption is synthesized to extend the photovoltaic response of perovskite to 850 nm. After doping the 8TPAEPC into the perovskite photoactive layer, the perovskite crystal quality is improved, resulting in its good electrical conductivity and less surface defects. Furthermore, the molecules stacking on the grain boundaries construct the charge transportation paths, as well as the p–n bulk heterojunction with enhanced built‐in potential. The target PSCs are optimized with notably enhanced PCE from 20% up to 22.10%, and excellent stability that is over 80% of the initial level at 70–80% relative humidity can be maintained for more than 500 h, benefiting from the improved hydrophobicity of 8TPAEPC. In addition, 8TPAEPC also serves as a dopant‐free, highly carrier‐mobile, and moreover, NIR‐responsive hole transport layer (HTL) with boosted PCE of 20.42% that reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs. Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine (8TPAEPC) with high‐carrier mobility of 3.12 × 10−3 cm2 V−1 s−1 is synthesized to extend the photovoltaic response of perovskite to 850 nm. The target perovskite solar cells (PSCs9 are qualified with increased power conversion efficiency (PCE) from 20% to 22.10%. Meanwhile, PCE of the PSCs with 8TPAEPC dopant‐free hole transport layer (HTL) reaches 20.42%, which reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202208539</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>8TPAEPC ; bulk heterojunctions ; Crystal defects ; Dopants ; dopant‐free hole transport layers ; Electrical resistivity ; Energy conversion efficiency ; Grain boundaries ; Heterojunctions ; Hydrophobicity ; Materials science ; Metal phthalocyanines ; Near infrared radiation ; near‐infrared photovoltaic responses ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Relative humidity ; Solar cells ; Surface defects</subject><ispartof>Advanced functional materials, 2022-12, Vol.32 (51), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-8180ed42b662941249a2f127b16a047d4795d0289bd1ceae9210d90e4b1d20e73</citedby><cites>FETCH-LOGICAL-c3179-8180ed42b662941249a2f127b16a047d4795d0289bd1ceae9210d90e4b1d20e73</cites><orcidid>0000-0001-6127-1742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202208539$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202208539$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Zhenhu</creatorcontrib><creatorcontrib>Liu, Hongli</creatorcontrib><creatorcontrib>Wang, Shirong</creatorcontrib><creatorcontrib>Bao, Huayu</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Li, Xianggao</creatorcontrib><title>Extended Near‐Infrared Photovoltaic Responses of Perovskite Solar Cells by p‐Type Phthalocyanine Derivative</title><title>Advanced functional materials</title><description>The absent photo‐response in near‐infrared (NIR) light (&gt;800 nm) of lead‐based perovskite solar cells (PSCs) limits the further improvement of their power conversion efficiency (PCE). Here, a narrow bandgap p‐type phthalocyanine derivative (Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine –8TPAEPC) with NIR absorption is synthesized to extend the photovoltaic response of perovskite to 850 nm. After doping the 8TPAEPC into the perovskite photoactive layer, the perovskite crystal quality is improved, resulting in its good electrical conductivity and less surface defects. Furthermore, the molecules stacking on the grain boundaries construct the charge transportation paths, as well as the p–n bulk heterojunction with enhanced built‐in potential. The target PSCs are optimized with notably enhanced PCE from 20% up to 22.10%, and excellent stability that is over 80% of the initial level at 70–80% relative humidity can be maintained for more than 500 h, benefiting from the improved hydrophobicity of 8TPAEPC. In addition, 8TPAEPC also serves as a dopant‐free, highly carrier‐mobile, and moreover, NIR‐responsive hole transport layer (HTL) with boosted PCE of 20.42% that reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs. Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine (8TPAEPC) with high‐carrier mobility of 3.12 × 10−3 cm2 V−1 s−1 is synthesized to extend the photovoltaic response of perovskite to 850 nm. The target perovskite solar cells (PSCs9 are qualified with increased power conversion efficiency (PCE) from 20% to 22.10%. Meanwhile, PCE of the PSCs with 8TPAEPC dopant‐free hole transport layer (HTL) reaches 20.42%, which reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs.</description><subject>8TPAEPC</subject><subject>bulk heterojunctions</subject><subject>Crystal defects</subject><subject>Dopants</subject><subject>dopant‐free hole transport layers</subject><subject>Electrical resistivity</subject><subject>Energy conversion efficiency</subject><subject>Grain boundaries</subject><subject>Heterojunctions</subject><subject>Hydrophobicity</subject><subject>Materials science</subject><subject>Metal phthalocyanines</subject><subject>Near infrared radiation</subject><subject>near‐infrared photovoltaic responses</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Surface defects</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqVw5WyJc4rtOHF8rPoDlQpUUCRulhNv1JQ0DnYayI1H4Bl5ElIVlSOn3ZXmm9WM510SPCAY02uls82AYkpxHAbiyOuRiER-gGl8fNjJy6l35twaY8J5wHqemXzUUGrQ6B6U_f78mpWZVba7FytTm8YUtcpT9AiuMqUDh0yGFmBN417zGtCTKZRFIygKh5IWVZ3Bsq2gg-uVKkzaqjIvAY3B5o2q8wbOvZNMFQ4ufmffe55OlqNbf_5wMxsN534aEC78mMQYNKNJFFHBCGVC0YxQnpBIYcY14yLUXTKRaJKCAkEJ1gIDS4imGHjQ9672vpU1b1twtVybrS27l5LyMAx4FMesUw32qtQa5yxksrL5RtlWEix3pcpdqfJQageIPfCeF9D-o5bD8fTuj_0BvmV94g</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Zhenhu</creator><creator>Liu, Hongli</creator><creator>Wang, Shirong</creator><creator>Bao, Huayu</creator><creator>Zhang, Fei</creator><creator>Li, Xianggao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6127-1742</orcidid></search><sort><creationdate>20221201</creationdate><title>Extended Near‐Infrared Photovoltaic Responses of Perovskite Solar Cells by p‐Type Phthalocyanine Derivative</title><author>Zhang, Zhenhu ; Liu, Hongli ; Wang, Shirong ; Bao, Huayu ; Zhang, Fei ; Li, Xianggao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-8180ed42b662941249a2f127b16a047d4795d0289bd1ceae9210d90e4b1d20e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>8TPAEPC</topic><topic>bulk heterojunctions</topic><topic>Crystal defects</topic><topic>Dopants</topic><topic>dopant‐free hole transport layers</topic><topic>Electrical resistivity</topic><topic>Energy conversion efficiency</topic><topic>Grain boundaries</topic><topic>Heterojunctions</topic><topic>Hydrophobicity</topic><topic>Materials science</topic><topic>Metal phthalocyanines</topic><topic>Near infrared radiation</topic><topic>near‐infrared photovoltaic responses</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Surface defects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenhu</creatorcontrib><creatorcontrib>Liu, Hongli</creatorcontrib><creatorcontrib>Wang, Shirong</creatorcontrib><creatorcontrib>Bao, Huayu</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Li, Xianggao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhenhu</au><au>Liu, Hongli</au><au>Wang, Shirong</au><au>Bao, Huayu</au><au>Zhang, Fei</au><au>Li, Xianggao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended Near‐Infrared Photovoltaic Responses of Perovskite Solar Cells by p‐Type Phthalocyanine Derivative</atitle><jtitle>Advanced functional materials</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>51</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The absent photo‐response in near‐infrared (NIR) light (&gt;800 nm) of lead‐based perovskite solar cells (PSCs) limits the further improvement of their power conversion efficiency (PCE). Here, a narrow bandgap p‐type phthalocyanine derivative (Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine –8TPAEPC) with NIR absorption is synthesized to extend the photovoltaic response of perovskite to 850 nm. After doping the 8TPAEPC into the perovskite photoactive layer, the perovskite crystal quality is improved, resulting in its good electrical conductivity and less surface defects. Furthermore, the molecules stacking on the grain boundaries construct the charge transportation paths, as well as the p–n bulk heterojunction with enhanced built‐in potential. The target PSCs are optimized with notably enhanced PCE from 20% up to 22.10%, and excellent stability that is over 80% of the initial level at 70–80% relative humidity can be maintained for more than 500 h, benefiting from the improved hydrophobicity of 8TPAEPC. In addition, 8TPAEPC also serves as a dopant‐free, highly carrier‐mobile, and moreover, NIR‐responsive hole transport layer (HTL) with boosted PCE of 20.42% that reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs. Copper(II) 2,3,9,10,16,17,23,24‐octakis((4‐(bis(4‐methoxyphenyl)amino)phenyl)ethynyl)phthalocyanine (8TPAEPC) with high‐carrier mobility of 3.12 × 10−3 cm2 V−1 s−1 is synthesized to extend the photovoltaic response of perovskite to 850 nm. The target perovskite solar cells (PSCs9 are qualified with increased power conversion efficiency (PCE) from 20% to 22.10%. Meanwhile, PCE of the PSCs with 8TPAEPC dopant‐free hole transport layer (HTL) reaches 20.42%, which reaches state of the art level among the dopant‐free metal phthalocyanines HTL‐based PSCs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202208539</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6127-1742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-12, Vol.32 (51), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2755376884
source Wiley Online Library Journals Frontfile Complete
subjects 8TPAEPC
bulk heterojunctions
Crystal defects
Dopants
dopant‐free hole transport layers
Electrical resistivity
Energy conversion efficiency
Grain boundaries
Heterojunctions
Hydrophobicity
Materials science
Metal phthalocyanines
Near infrared radiation
near‐infrared photovoltaic responses
perovskite solar cells
Perovskites
Photovoltaic cells
Relative humidity
Solar cells
Surface defects
title Extended Near‐Infrared Photovoltaic Responses of Perovskite Solar Cells by p‐Type Phthalocyanine Derivative
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20Near%E2%80%90Infrared%20Photovoltaic%20Responses%20of%20Perovskite%20Solar%20Cells%20by%20p%E2%80%90Type%20Phthalocyanine%20Derivative&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Zhenhu&rft.date=2022-12-01&rft.volume=32&rft.issue=51&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202208539&rft_dat=%3Cproquest_cross%3E2755376884%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755376884&rft_id=info:pmid/&rfr_iscdi=true