Bio‐inspired optimization to support the test data generation of concurrent software

Summary Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism presen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2023-01, Vol.35 (2), p.n/a
Hauptverfasser: Ferreira Vilela, Ricardo, Choma Neto, João, Santiago Costa Pinto, Victor Hugo, Lopes de Souza, Paulo Sérgio, do Rocio Senger de Souza, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Concurrency and computation
container_volume 35
creator Ferreira Vilela, Ricardo
Choma Neto, João
Santiago Costa Pinto, Victor Hugo
Lopes de Souza, Paulo Sérgio
do Rocio Senger de Souza, Simone
description Summary Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism present in those applications is one of the main issues during the test activity since the same test input can produce different possible execution paths, which may or not contain defects. The test data automatic generation can alleviate this problem, ensuring higher speed and reliability in software testing activity. This paper explores the automatic test data generation for concurrent programs through Genetic Algorithm, a bioinspired optimization technique, and proposes a test data generation approach for concurrent programs, called BioConcST, and a new operator for the selection of test subjects, called FuzzyST, which uses fuzzy logic. The approaches were evaluated in an experimental study towards their validation. The results showed that BioConcST is more promising than the other approaches at all analyzed levels. FuzzyST, together with Elitism and Tournament operators, provided the best results; however, it proved more suitable for concurrent programs of higher complexity.
doi_str_mv 10.1002/cpe.7489
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755372832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755372832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1849-bc35f82d996a5459b543c11c7795c799cb533464d6720f458ecbe0ed76a8e1793</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpSDyCJRaWFF_jeISoXKRKMACr5TgOuGrjYDuqysQj8Iw8CSlBbEznDJ_-c_QDcIrRDCNELkxnZ4IVcg9MMKckQzll-387yQ_BUYxLhDBGFE_A85XzXx-fro2dC7aGvktu7d51cr6FycPYd50PCaZXC5ONCdY6afhiWxtG4xtofGv6EGybYPRN2uhgj8FBo1fRnvzOKXi6nj-Wt9ni_uauvFxkBhdMZpWhvClILWWuOeOy4owajI0Qkhshpak4pSxndS4IahgvrKkssrXIdWGxkHQKzsbcLvi3fvhPLX0f2uGkIoJzKkhByaDOR2WCjzHYRnXBrXXYKozUrjU1tKZ2rQ00G-nGrez2X6fKh_mP_waLEG85</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755372832</pqid></control><display><type>article</type><title>Bio‐inspired optimization to support the test data generation of concurrent software</title><source>Wiley Online Library All Journals</source><creator>Ferreira Vilela, Ricardo ; Choma Neto, João ; Santiago Costa Pinto, Victor Hugo ; Lopes de Souza, Paulo Sérgio ; do Rocio Senger de Souza, Simone</creator><creatorcontrib>Ferreira Vilela, Ricardo ; Choma Neto, João ; Santiago Costa Pinto, Victor Hugo ; Lopes de Souza, Paulo Sérgio ; do Rocio Senger de Souza, Simone</creatorcontrib><description>Summary Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism present in those applications is one of the main issues during the test activity since the same test input can produce different possible execution paths, which may or not contain defects. The test data automatic generation can alleviate this problem, ensuring higher speed and reliability in software testing activity. This paper explores the automatic test data generation for concurrent programs through Genetic Algorithm, a bioinspired optimization technique, and proposes a test data generation approach for concurrent programs, called BioConcST, and a new operator for the selection of test subjects, called FuzzyST, which uses fuzzy logic. The approaches were evaluated in an experimental study towards their validation. The results showed that BioConcST is more promising than the other approaches at all analyzed levels. FuzzyST, together with Elitism and Tournament operators, provided the best results; however, it proved more suitable for concurrent programs of higher complexity.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7489</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Concurrent processing ; concurrent software testing ; Fuzzy logic ; Genetic algorithms ; Optimization ; Optimization techniques ; search‐based software testing ; Software ; Software reliability ; Software testing ; test data generation</subject><ispartof>Concurrency and computation, 2023-01, Vol.35 (2), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1849-bc35f82d996a5459b543c11c7795c799cb533464d6720f458ecbe0ed76a8e1793</cites><orcidid>0000-0001-8562-6384 ; 0000-0001-9007-9821 ; 0000-0001-5242-4938 ; 0000-0002-1560-2704 ; 0000-0001-6504-7932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.7489$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.7489$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ferreira Vilela, Ricardo</creatorcontrib><creatorcontrib>Choma Neto, João</creatorcontrib><creatorcontrib>Santiago Costa Pinto, Victor Hugo</creatorcontrib><creatorcontrib>Lopes de Souza, Paulo Sérgio</creatorcontrib><creatorcontrib>do Rocio Senger de Souza, Simone</creatorcontrib><title>Bio‐inspired optimization to support the test data generation of concurrent software</title><title>Concurrency and computation</title><description>Summary Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism present in those applications is one of the main issues during the test activity since the same test input can produce different possible execution paths, which may or not contain defects. The test data automatic generation can alleviate this problem, ensuring higher speed and reliability in software testing activity. This paper explores the automatic test data generation for concurrent programs through Genetic Algorithm, a bioinspired optimization technique, and proposes a test data generation approach for concurrent programs, called BioConcST, and a new operator for the selection of test subjects, called FuzzyST, which uses fuzzy logic. The approaches were evaluated in an experimental study towards their validation. The results showed that BioConcST is more promising than the other approaches at all analyzed levels. FuzzyST, together with Elitism and Tournament operators, provided the best results; however, it proved more suitable for concurrent programs of higher complexity.</description><subject>Concurrent processing</subject><subject>concurrent software testing</subject><subject>Fuzzy logic</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>search‐based software testing</subject><subject>Software</subject><subject>Software reliability</subject><subject>Software testing</subject><subject>test data generation</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpSDyCJRaWFF_jeISoXKRKMACr5TgOuGrjYDuqysQj8Iw8CSlBbEznDJ_-c_QDcIrRDCNELkxnZ4IVcg9MMKckQzll-387yQ_BUYxLhDBGFE_A85XzXx-fro2dC7aGvktu7d51cr6FycPYd50PCaZXC5ONCdY6afhiWxtG4xtofGv6EGybYPRN2uhgj8FBo1fRnvzOKXi6nj-Wt9ni_uauvFxkBhdMZpWhvClILWWuOeOy4owajI0Qkhshpak4pSxndS4IahgvrKkssrXIdWGxkHQKzsbcLvi3fvhPLX0f2uGkIoJzKkhByaDOR2WCjzHYRnXBrXXYKozUrjU1tKZ2rQ00G-nGrez2X6fKh_mP_waLEG85</recordid><startdate>20230125</startdate><enddate>20230125</enddate><creator>Ferreira Vilela, Ricardo</creator><creator>Choma Neto, João</creator><creator>Santiago Costa Pinto, Victor Hugo</creator><creator>Lopes de Souza, Paulo Sérgio</creator><creator>do Rocio Senger de Souza, Simone</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8562-6384</orcidid><orcidid>https://orcid.org/0000-0001-9007-9821</orcidid><orcidid>https://orcid.org/0000-0001-5242-4938</orcidid><orcidid>https://orcid.org/0000-0002-1560-2704</orcidid><orcidid>https://orcid.org/0000-0001-6504-7932</orcidid></search><sort><creationdate>20230125</creationdate><title>Bio‐inspired optimization to support the test data generation of concurrent software</title><author>Ferreira Vilela, Ricardo ; Choma Neto, João ; Santiago Costa Pinto, Victor Hugo ; Lopes de Souza, Paulo Sérgio ; do Rocio Senger de Souza, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1849-bc35f82d996a5459b543c11c7795c799cb533464d6720f458ecbe0ed76a8e1793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Concurrent processing</topic><topic>concurrent software testing</topic><topic>Fuzzy logic</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>search‐based software testing</topic><topic>Software</topic><topic>Software reliability</topic><topic>Software testing</topic><topic>test data generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira Vilela, Ricardo</creatorcontrib><creatorcontrib>Choma Neto, João</creatorcontrib><creatorcontrib>Santiago Costa Pinto, Victor Hugo</creatorcontrib><creatorcontrib>Lopes de Souza, Paulo Sérgio</creatorcontrib><creatorcontrib>do Rocio Senger de Souza, Simone</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira Vilela, Ricardo</au><au>Choma Neto, João</au><au>Santiago Costa Pinto, Victor Hugo</au><au>Lopes de Souza, Paulo Sérgio</au><au>do Rocio Senger de Souza, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐inspired optimization to support the test data generation of concurrent software</atitle><jtitle>Concurrency and computation</jtitle><date>2023-01-25</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Concurrent programming is increasingly present in modern applications. Although it provides higher performance and better use of available resources, the mechanisms of interaction between processes/threads result in a greater challenge for software testing activity. The nondeterminism present in those applications is one of the main issues during the test activity since the same test input can produce different possible execution paths, which may or not contain defects. The test data automatic generation can alleviate this problem, ensuring higher speed and reliability in software testing activity. This paper explores the automatic test data generation for concurrent programs through Genetic Algorithm, a bioinspired optimization technique, and proposes a test data generation approach for concurrent programs, called BioConcST, and a new operator for the selection of test subjects, called FuzzyST, which uses fuzzy logic. The approaches were evaluated in an experimental study towards their validation. The results showed that BioConcST is more promising than the other approaches at all analyzed levels. FuzzyST, together with Elitism and Tournament operators, provided the best results; however, it proved more suitable for concurrent programs of higher complexity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cpe.7489</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-8562-6384</orcidid><orcidid>https://orcid.org/0000-0001-9007-9821</orcidid><orcidid>https://orcid.org/0000-0001-5242-4938</orcidid><orcidid>https://orcid.org/0000-0002-1560-2704</orcidid><orcidid>https://orcid.org/0000-0001-6504-7932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2023-01, Vol.35 (2), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2755372832
source Wiley Online Library All Journals
subjects Concurrent processing
concurrent software testing
Fuzzy logic
Genetic algorithms
Optimization
Optimization techniques
search‐based software testing
Software
Software reliability
Software testing
test data generation
title Bio‐inspired optimization to support the test data generation of concurrent software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90inspired%20optimization%20to%20support%20the%20test%20data%20generation%20of%20concurrent%20software&rft.jtitle=Concurrency%20and%20computation&rft.au=Ferreira%20Vilela,%20Ricardo&rft.date=2023-01-25&rft.volume=35&rft.issue=2&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7489&rft_dat=%3Cproquest_cross%3E2755372832%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755372832&rft_id=info:pmid/&rfr_iscdi=true