P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis

P58 IPK has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased P58 IPK mRNA and protein levels in Arabidopsis. Although the growth of 2  ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology reports 2022-12, Vol.16 (6), p.665-681
Hauptverfasser: Ko, Ki Seong, Yoo, Jae Yong, Kim, Kyung Hwa, Hwang, Bo Young, Vu, Bich Ngoc, Lee, Young Eun, Choi, Ha Na, Lee, Yoo Na, Yun, Jihee, Park, Ji Ye, Chung, Woo Sik, Hong, Jong Chan, Jeong, Myeong Seon, Jung, Hyun Suk, Jung, Su Kyoung, Park, Jeong Mee, Lee, Kyun Oh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 6
container_start_page 665
container_title Plant biotechnology reports
container_volume 16
creator Ko, Ki Seong
Yoo, Jae Yong
Kim, Kyung Hwa
Hwang, Bo Young
Vu, Bich Ngoc
Lee, Young Eun
Choi, Ha Na
Lee, Yoo Na
Yun, Jihee
Park, Ji Ye
Chung, Woo Sik
Hong, Jong Chan
Jeong, Myeong Seon
Jung, Hyun Suk
Jung, Su Kyoung
Park, Jeong Mee
Lee, Kyun Oh
description P58 IPK has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased P58 IPK mRNA and protein levels in Arabidopsis. Although the growth of 2  ×  35S:P58 IPK -myc plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of p58 ipk -2 mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the p58 ipk -2 mutants than in Col-0 plants. Protein synthesis inhibition by TM in 2  ×  35S:P58 IPK -myc plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in p58 ipk -2 mutants. The GST-P58 IPK protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58 IPK has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress, 2  ×  35S:P58 IPK -myc plants recovered better than Col-0, but p58 ipk -2 mutants recovered less than Col-0. These findings reveal that P58 IPK can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.
doi_str_mv 10.1007/s11816-022-00797-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755144592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755144592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA82r-bbJ7lFK1WGgRPYfZbLbd0mZrJhX67V1d0ZunmYH33jx-hFxzdssZM3fIecF1xoTI-rM0mTwhI15omeXKqNPfXetzcoG4YUwLY-SILJZ5MVs-0wZcu20TJI90v4WQaPSu-_DxSJvY7ej0hWKKHpFWR-rDGoJrw4ruY5d8GygeQ1p7bPGSnDWwRX_1M8fk7WH6OnnK5ovH2eR-njmhypRVpa6M1HnFJIAED9oYLj1nQnPRFOAaUanCSRDS1R6qoqhVVSqoc9PUXIEck5sht2_wfvCY7KY7xNC_tMLkOVcqL0WvEoPKxQ4x-sbuY7uDeLSc2S9wdgBne3D2G5yVvUkOJuzFYeXjX_Q_rk-an3EM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755144592</pqid></control><display><type>article</type><title>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</title><source>SpringerNature Journals</source><creator>Ko, Ki Seong ; Yoo, Jae Yong ; Kim, Kyung Hwa ; Hwang, Bo Young ; Vu, Bich Ngoc ; Lee, Young Eun ; Choi, Ha Na ; Lee, Yoo Na ; Yun, Jihee ; Park, Ji Ye ; Chung, Woo Sik ; Hong, Jong Chan ; Jeong, Myeong Seon ; Jung, Hyun Suk ; Jung, Su Kyoung ; Park, Jeong Mee ; Lee, Kyun Oh</creator><creatorcontrib>Ko, Ki Seong ; Yoo, Jae Yong ; Kim, Kyung Hwa ; Hwang, Bo Young ; Vu, Bich Ngoc ; Lee, Young Eun ; Choi, Ha Na ; Lee, Yoo Na ; Yun, Jihee ; Park, Ji Ye ; Chung, Woo Sik ; Hong, Jong Chan ; Jeong, Myeong Seon ; Jung, Hyun Suk ; Jung, Su Kyoung ; Park, Jeong Mee ; Lee, Kyun Oh</creatorcontrib><description>P58 IPK has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased P58 IPK mRNA and protein levels in Arabidopsis. Although the growth of 2  ×  35S:P58 IPK -myc plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of p58 ipk -2 mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the p58 ipk -2 mutants than in Col-0 plants. Protein synthesis inhibition by TM in 2  ×  35S:P58 IPK -myc plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in p58 ipk -2 mutants. The GST-P58 IPK protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58 IPK has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress, 2  ×  35S:P58 IPK -myc plants recovered better than Col-0, but p58 ipk -2 mutants recovered less than Col-0. These findings reveal that P58 IPK can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.</description><identifier>ISSN: 1863-5466</identifier><identifier>EISSN: 1863-5474</identifier><identifier>DOI: 10.1007/s11816-022-00797-3</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Agriculture ; Arabidopsis ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Life Sciences ; mRNA ; Mutants ; Myc protein ; Original Article ; Pathogenesis ; Plant Biochemistry ; Plant Sciences ; Protein biosynthesis ; Protein folding ; Protein synthesis ; Proteins ; Recovery ; Ribonucleic acid ; Ribosomes ; RNA ; Tunicamycin</subject><ispartof>Plant biotechnology reports, 2022-12, Vol.16 (6), p.665-681</ispartof><rights>Korean Society for Plant Biotechnology 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</citedby><cites>FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</cites><orcidid>0000-0002-0472-4458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11816-022-00797-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11816-022-00797-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ko, Ki Seong</creatorcontrib><creatorcontrib>Yoo, Jae Yong</creatorcontrib><creatorcontrib>Kim, Kyung Hwa</creatorcontrib><creatorcontrib>Hwang, Bo Young</creatorcontrib><creatorcontrib>Vu, Bich Ngoc</creatorcontrib><creatorcontrib>Lee, Young Eun</creatorcontrib><creatorcontrib>Choi, Ha Na</creatorcontrib><creatorcontrib>Lee, Yoo Na</creatorcontrib><creatorcontrib>Yun, Jihee</creatorcontrib><creatorcontrib>Park, Ji Ye</creatorcontrib><creatorcontrib>Chung, Woo Sik</creatorcontrib><creatorcontrib>Hong, Jong Chan</creatorcontrib><creatorcontrib>Jeong, Myeong Seon</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><creatorcontrib>Jung, Su Kyoung</creatorcontrib><creatorcontrib>Park, Jeong Mee</creatorcontrib><creatorcontrib>Lee, Kyun Oh</creatorcontrib><title>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</title><title>Plant biotechnology reports</title><addtitle>Plant Biotechnol Rep</addtitle><description>P58 IPK has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased P58 IPK mRNA and protein levels in Arabidopsis. Although the growth of 2  ×  35S:P58 IPK -myc plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of p58 ipk -2 mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the p58 ipk -2 mutants than in Col-0 plants. Protein synthesis inhibition by TM in 2  ×  35S:P58 IPK -myc plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in p58 ipk -2 mutants. The GST-P58 IPK protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58 IPK has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress, 2  ×  35S:P58 IPK -myc plants recovered better than Col-0, but p58 ipk -2 mutants recovered less than Col-0. These findings reveal that P58 IPK can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.</description><subject>Agriculture</subject><subject>Arabidopsis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Life Sciences</subject><subject>mRNA</subject><subject>Mutants</subject><subject>Myc protein</subject><subject>Original Article</subject><subject>Pathogenesis</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Protein biosynthesis</subject><subject>Protein folding</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Recovery</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>RNA</subject><subject>Tunicamycin</subject><issn>1863-5466</issn><issn>1863-5474</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA82r-bbJ7lFK1WGgRPYfZbLbd0mZrJhX67V1d0ZunmYH33jx-hFxzdssZM3fIecF1xoTI-rM0mTwhI15omeXKqNPfXetzcoG4YUwLY-SILJZ5MVs-0wZcu20TJI90v4WQaPSu-_DxSJvY7ej0hWKKHpFWR-rDGoJrw4ruY5d8GygeQ1p7bPGSnDWwRX_1M8fk7WH6OnnK5ovH2eR-njmhypRVpa6M1HnFJIAED9oYLj1nQnPRFOAaUanCSRDS1R6qoqhVVSqoc9PUXIEck5sht2_wfvCY7KY7xNC_tMLkOVcqL0WvEoPKxQ4x-sbuY7uDeLSc2S9wdgBne3D2G5yVvUkOJuzFYeXjX_Q_rk-an3EM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ko, Ki Seong</creator><creator>Yoo, Jae Yong</creator><creator>Kim, Kyung Hwa</creator><creator>Hwang, Bo Young</creator><creator>Vu, Bich Ngoc</creator><creator>Lee, Young Eun</creator><creator>Choi, Ha Na</creator><creator>Lee, Yoo Na</creator><creator>Yun, Jihee</creator><creator>Park, Ji Ye</creator><creator>Chung, Woo Sik</creator><creator>Hong, Jong Chan</creator><creator>Jeong, Myeong Seon</creator><creator>Jung, Hyun Suk</creator><creator>Jung, Su Kyoung</creator><creator>Park, Jeong Mee</creator><creator>Lee, Kyun Oh</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0472-4458</orcidid></search><sort><creationdate>20221201</creationdate><title>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</title><author>Ko, Ki Seong ; Yoo, Jae Yong ; Kim, Kyung Hwa ; Hwang, Bo Young ; Vu, Bich Ngoc ; Lee, Young Eun ; Choi, Ha Na ; Lee, Yoo Na ; Yun, Jihee ; Park, Ji Ye ; Chung, Woo Sik ; Hong, Jong Chan ; Jeong, Myeong Seon ; Jung, Hyun Suk ; Jung, Su Kyoung ; Park, Jeong Mee ; Lee, Kyun Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Arabidopsis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Life Sciences</topic><topic>mRNA</topic><topic>Mutants</topic><topic>Myc protein</topic><topic>Original Article</topic><topic>Pathogenesis</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Protein biosynthesis</topic><topic>Protein folding</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Recovery</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>RNA</topic><topic>Tunicamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Ki Seong</creatorcontrib><creatorcontrib>Yoo, Jae Yong</creatorcontrib><creatorcontrib>Kim, Kyung Hwa</creatorcontrib><creatorcontrib>Hwang, Bo Young</creatorcontrib><creatorcontrib>Vu, Bich Ngoc</creatorcontrib><creatorcontrib>Lee, Young Eun</creatorcontrib><creatorcontrib>Choi, Ha Na</creatorcontrib><creatorcontrib>Lee, Yoo Na</creatorcontrib><creatorcontrib>Yun, Jihee</creatorcontrib><creatorcontrib>Park, Ji Ye</creatorcontrib><creatorcontrib>Chung, Woo Sik</creatorcontrib><creatorcontrib>Hong, Jong Chan</creatorcontrib><creatorcontrib>Jeong, Myeong Seon</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><creatorcontrib>Jung, Su Kyoung</creatorcontrib><creatorcontrib>Park, Jeong Mee</creatorcontrib><creatorcontrib>Lee, Kyun Oh</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant biotechnology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Ki Seong</au><au>Yoo, Jae Yong</au><au>Kim, Kyung Hwa</au><au>Hwang, Bo Young</au><au>Vu, Bich Ngoc</au><au>Lee, Young Eun</au><au>Choi, Ha Na</au><au>Lee, Yoo Na</au><au>Yun, Jihee</au><au>Park, Ji Ye</au><au>Chung, Woo Sik</au><au>Hong, Jong Chan</au><au>Jeong, Myeong Seon</au><au>Jung, Hyun Suk</au><au>Jung, Su Kyoung</au><au>Park, Jeong Mee</au><au>Lee, Kyun Oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</atitle><jtitle>Plant biotechnology reports</jtitle><stitle>Plant Biotechnol Rep</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>665</spage><epage>681</epage><pages>665-681</pages><issn>1863-5466</issn><eissn>1863-5474</eissn><abstract>P58 IPK has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased P58 IPK mRNA and protein levels in Arabidopsis. Although the growth of 2  ×  35S:P58 IPK -myc plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of p58 ipk -2 mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the p58 ipk -2 mutants than in Col-0 plants. Protein synthesis inhibition by TM in 2  ×  35S:P58 IPK -myc plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in p58 ipk -2 mutants. The GST-P58 IPK protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58 IPK has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress, 2  ×  35S:P58 IPK -myc plants recovered better than Col-0, but p58 ipk -2 mutants recovered less than Col-0. These findings reveal that P58 IPK can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s11816-022-00797-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0472-4458</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-5466
ispartof Plant biotechnology reports, 2022-12, Vol.16 (6), p.665-681
issn 1863-5466
1863-5474
language eng
recordid cdi_proquest_journals_2755144592
source SpringerNature Journals
subjects Agriculture
Arabidopsis
Biomedical and Life Sciences
Biotechnology
Cell Biology
Life Sciences
mRNA
Mutants
Myc protein
Original Article
Pathogenesis
Plant Biochemistry
Plant Sciences
Protein biosynthesis
Protein folding
Protein synthesis
Proteins
Recovery
Ribonucleic acid
Ribosomes
RNA
Tunicamycin
title P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P58IPK%20facilitates%20plant%20recovery%20from%20ER%20stress%20by%20enhancing%20protein%20synthesis&rft.jtitle=Plant%20biotechnology%20reports&rft.au=Ko,%20Ki%20Seong&rft.date=2022-12-01&rft.volume=16&rft.issue=6&rft.spage=665&rft.epage=681&rft.pages=665-681&rft.issn=1863-5466&rft.eissn=1863-5474&rft_id=info:doi/10.1007/s11816-022-00797-3&rft_dat=%3Cproquest_cross%3E2755144592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755144592&rft_id=info:pmid/&rfr_iscdi=true