P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis
P58 IPK has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased P58 IPK mRNA and protein levels in Arabidopsis. Although the growth of 2 ...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology reports 2022-12, Vol.16 (6), p.665-681 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 6 |
container_start_page | 665 |
container_title | Plant biotechnology reports |
container_volume | 16 |
creator | Ko, Ki Seong Yoo, Jae Yong Kim, Kyung Hwa Hwang, Bo Young Vu, Bich Ngoc Lee, Young Eun Choi, Ha Na Lee, Yoo Na Yun, Jihee Park, Ji Ye Chung, Woo Sik Hong, Jong Chan Jeong, Myeong Seon Jung, Hyun Suk Jung, Su Kyoung Park, Jeong Mee Lee, Kyun Oh |
description | P58
IPK
has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased
P58
IPK
mRNA and protein levels in Arabidopsis. Although the growth of
2
×
35S:P58
IPK
-myc
plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of
p58
ipk
-2
mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the
p58
ipk
-2
mutants than in Col-0 plants. Protein synthesis inhibition by TM in
2
×
35S:P58
IPK
-myc
plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in
p58
ipk
-2
mutants. The GST-P58
IPK
protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58
IPK
has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress,
2
×
35S:P58
IPK
-myc
plants recovered better than Col-0, but
p58
ipk
-2
mutants recovered less than Col-0. These findings reveal that P58
IPK
can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress. |
doi_str_mv | 10.1007/s11816-022-00797-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2755144592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755144592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA82r-bbJ7lFK1WGgRPYfZbLbd0mZrJhX67V1d0ZunmYH33jx-hFxzdssZM3fIecF1xoTI-rM0mTwhI15omeXKqNPfXetzcoG4YUwLY-SILJZ5MVs-0wZcu20TJI90v4WQaPSu-_DxSJvY7ej0hWKKHpFWR-rDGoJrw4ruY5d8GygeQ1p7bPGSnDWwRX_1M8fk7WH6OnnK5ovH2eR-njmhypRVpa6M1HnFJIAED9oYLj1nQnPRFOAaUanCSRDS1R6qoqhVVSqoc9PUXIEck5sht2_wfvCY7KY7xNC_tMLkOVcqL0WvEoPKxQ4x-sbuY7uDeLSc2S9wdgBne3D2G5yVvUkOJuzFYeXjX_Q_rk-an3EM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755144592</pqid></control><display><type>article</type><title>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</title><source>SpringerNature Journals</source><creator>Ko, Ki Seong ; Yoo, Jae Yong ; Kim, Kyung Hwa ; Hwang, Bo Young ; Vu, Bich Ngoc ; Lee, Young Eun ; Choi, Ha Na ; Lee, Yoo Na ; Yun, Jihee ; Park, Ji Ye ; Chung, Woo Sik ; Hong, Jong Chan ; Jeong, Myeong Seon ; Jung, Hyun Suk ; Jung, Su Kyoung ; Park, Jeong Mee ; Lee, Kyun Oh</creator><creatorcontrib>Ko, Ki Seong ; Yoo, Jae Yong ; Kim, Kyung Hwa ; Hwang, Bo Young ; Vu, Bich Ngoc ; Lee, Young Eun ; Choi, Ha Na ; Lee, Yoo Na ; Yun, Jihee ; Park, Ji Ye ; Chung, Woo Sik ; Hong, Jong Chan ; Jeong, Myeong Seon ; Jung, Hyun Suk ; Jung, Su Kyoung ; Park, Jeong Mee ; Lee, Kyun Oh</creatorcontrib><description>P58
IPK
has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased
P58
IPK
mRNA and protein levels in Arabidopsis. Although the growth of
2
×
35S:P58
IPK
-myc
plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of
p58
ipk
-2
mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the
p58
ipk
-2
mutants than in Col-0 plants. Protein synthesis inhibition by TM in
2
×
35S:P58
IPK
-myc
plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in
p58
ipk
-2
mutants. The GST-P58
IPK
protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58
IPK
has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress,
2
×
35S:P58
IPK
-myc
plants recovered better than Col-0, but
p58
ipk
-2
mutants recovered less than Col-0. These findings reveal that P58
IPK
can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.</description><identifier>ISSN: 1863-5466</identifier><identifier>EISSN: 1863-5474</identifier><identifier>DOI: 10.1007/s11816-022-00797-3</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Agriculture ; Arabidopsis ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Life Sciences ; mRNA ; Mutants ; Myc protein ; Original Article ; Pathogenesis ; Plant Biochemistry ; Plant Sciences ; Protein biosynthesis ; Protein folding ; Protein synthesis ; Proteins ; Recovery ; Ribonucleic acid ; Ribosomes ; RNA ; Tunicamycin</subject><ispartof>Plant biotechnology reports, 2022-12, Vol.16 (6), p.665-681</ispartof><rights>Korean Society for Plant Biotechnology 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</citedby><cites>FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</cites><orcidid>0000-0002-0472-4458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11816-022-00797-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11816-022-00797-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ko, Ki Seong</creatorcontrib><creatorcontrib>Yoo, Jae Yong</creatorcontrib><creatorcontrib>Kim, Kyung Hwa</creatorcontrib><creatorcontrib>Hwang, Bo Young</creatorcontrib><creatorcontrib>Vu, Bich Ngoc</creatorcontrib><creatorcontrib>Lee, Young Eun</creatorcontrib><creatorcontrib>Choi, Ha Na</creatorcontrib><creatorcontrib>Lee, Yoo Na</creatorcontrib><creatorcontrib>Yun, Jihee</creatorcontrib><creatorcontrib>Park, Ji Ye</creatorcontrib><creatorcontrib>Chung, Woo Sik</creatorcontrib><creatorcontrib>Hong, Jong Chan</creatorcontrib><creatorcontrib>Jeong, Myeong Seon</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><creatorcontrib>Jung, Su Kyoung</creatorcontrib><creatorcontrib>Park, Jeong Mee</creatorcontrib><creatorcontrib>Lee, Kyun Oh</creatorcontrib><title>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</title><title>Plant biotechnology reports</title><addtitle>Plant Biotechnol Rep</addtitle><description>P58
IPK
has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased
P58
IPK
mRNA and protein levels in Arabidopsis. Although the growth of
2
×
35S:P58
IPK
-myc
plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of
p58
ipk
-2
mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the
p58
ipk
-2
mutants than in Col-0 plants. Protein synthesis inhibition by TM in
2
×
35S:P58
IPK
-myc
plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in
p58
ipk
-2
mutants. The GST-P58
IPK
protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58
IPK
has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress,
2
×
35S:P58
IPK
-myc
plants recovered better than Col-0, but
p58
ipk
-2
mutants recovered less than Col-0. These findings reveal that P58
IPK
can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.</description><subject>Agriculture</subject><subject>Arabidopsis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Life Sciences</subject><subject>mRNA</subject><subject>Mutants</subject><subject>Myc protein</subject><subject>Original Article</subject><subject>Pathogenesis</subject><subject>Plant Biochemistry</subject><subject>Plant Sciences</subject><subject>Protein biosynthesis</subject><subject>Protein folding</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Recovery</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>RNA</subject><subject>Tunicamycin</subject><issn>1863-5466</issn><issn>1863-5474</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA82r-bbJ7lFK1WGgRPYfZbLbd0mZrJhX67V1d0ZunmYH33jx-hFxzdssZM3fIecF1xoTI-rM0mTwhI15omeXKqNPfXetzcoG4YUwLY-SILJZ5MVs-0wZcu20TJI90v4WQaPSu-_DxSJvY7ej0hWKKHpFWR-rDGoJrw4ruY5d8GygeQ1p7bPGSnDWwRX_1M8fk7WH6OnnK5ovH2eR-njmhypRVpa6M1HnFJIAED9oYLj1nQnPRFOAaUanCSRDS1R6qoqhVVSqoc9PUXIEck5sht2_wfvCY7KY7xNC_tMLkOVcqL0WvEoPKxQ4x-sbuY7uDeLSc2S9wdgBne3D2G5yVvUkOJuzFYeXjX_Q_rk-an3EM</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ko, Ki Seong</creator><creator>Yoo, Jae Yong</creator><creator>Kim, Kyung Hwa</creator><creator>Hwang, Bo Young</creator><creator>Vu, Bich Ngoc</creator><creator>Lee, Young Eun</creator><creator>Choi, Ha Na</creator><creator>Lee, Yoo Na</creator><creator>Yun, Jihee</creator><creator>Park, Ji Ye</creator><creator>Chung, Woo Sik</creator><creator>Hong, Jong Chan</creator><creator>Jeong, Myeong Seon</creator><creator>Jung, Hyun Suk</creator><creator>Jung, Su Kyoung</creator><creator>Park, Jeong Mee</creator><creator>Lee, Kyun Oh</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-0472-4458</orcidid></search><sort><creationdate>20221201</creationdate><title>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</title><author>Ko, Ki Seong ; Yoo, Jae Yong ; Kim, Kyung Hwa ; Hwang, Bo Young ; Vu, Bich Ngoc ; Lee, Young Eun ; Choi, Ha Na ; Lee, Yoo Na ; Yun, Jihee ; Park, Ji Ye ; Chung, Woo Sik ; Hong, Jong Chan ; Jeong, Myeong Seon ; Jung, Hyun Suk ; Jung, Su Kyoung ; Park, Jeong Mee ; Lee, Kyun Oh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b96b7365b03aa3aea67713e102612f8acf2b48c3a23cdeab88d4b94ad57fd14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agriculture</topic><topic>Arabidopsis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Life Sciences</topic><topic>mRNA</topic><topic>Mutants</topic><topic>Myc protein</topic><topic>Original Article</topic><topic>Pathogenesis</topic><topic>Plant Biochemistry</topic><topic>Plant Sciences</topic><topic>Protein biosynthesis</topic><topic>Protein folding</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Recovery</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>RNA</topic><topic>Tunicamycin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Ki Seong</creatorcontrib><creatorcontrib>Yoo, Jae Yong</creatorcontrib><creatorcontrib>Kim, Kyung Hwa</creatorcontrib><creatorcontrib>Hwang, Bo Young</creatorcontrib><creatorcontrib>Vu, Bich Ngoc</creatorcontrib><creatorcontrib>Lee, Young Eun</creatorcontrib><creatorcontrib>Choi, Ha Na</creatorcontrib><creatorcontrib>Lee, Yoo Na</creatorcontrib><creatorcontrib>Yun, Jihee</creatorcontrib><creatorcontrib>Park, Ji Ye</creatorcontrib><creatorcontrib>Chung, Woo Sik</creatorcontrib><creatorcontrib>Hong, Jong Chan</creatorcontrib><creatorcontrib>Jeong, Myeong Seon</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><creatorcontrib>Jung, Su Kyoung</creatorcontrib><creatorcontrib>Park, Jeong Mee</creatorcontrib><creatorcontrib>Lee, Kyun Oh</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant biotechnology reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Ki Seong</au><au>Yoo, Jae Yong</au><au>Kim, Kyung Hwa</au><au>Hwang, Bo Young</au><au>Vu, Bich Ngoc</au><au>Lee, Young Eun</au><au>Choi, Ha Na</au><au>Lee, Yoo Na</au><au>Yun, Jihee</au><au>Park, Ji Ye</au><au>Chung, Woo Sik</au><au>Hong, Jong Chan</au><au>Jeong, Myeong Seon</au><au>Jung, Hyun Suk</au><au>Jung, Su Kyoung</au><au>Park, Jeong Mee</au><au>Lee, Kyun Oh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis</atitle><jtitle>Plant biotechnology reports</jtitle><stitle>Plant Biotechnol Rep</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>665</spage><epage>681</epage><pages>665-681</pages><issn>1863-5466</issn><eissn>1863-5474</eissn><abstract>P58
IPK
has been implicated in eukaryotic ER stress responses and viral pathogenesis, however, its biological functions and molecular mechanism in plants are unclear. Prolonged ER stress produced by tunicamycin (TM) increased
P58
IPK
mRNA and protein levels in Arabidopsis. Although the growth of
2
×
35S:P58
IPK
-myc
plants was less severely inhibited than that of Col-0 plants, TM inhibited the growth of
p58
ipk
-2
mutants more severely than that of Col-0 plants. Under prolonged ER stress conditions, the unfolded protein response (UPR)-related genes were expressed at a higher level in the
p58
ipk
-2
mutants than in Col-0 plants. Protein synthesis inhibition by TM in
2
×
35S:P58
IPK
-myc
plants was lower than in Col-0 plants under prolonged ER stress conditions, however, not significantly different in
p58
ipk
-2
mutants. The GST-P58
IPK
protein exhibited both chaperone and RNA-binding activities in a dose-dependent manner. P58
IPK
has been shown to interact with ribosomes, allowing for enhanced protein production on the ER membrane. Following ER stress,
2
×
35S:P58
IPK
-myc
plants recovered better than Col-0, but
p58
ipk
-2
mutants recovered less than Col-0. These findings reveal that P58
IPK
can promote protein translation in association with ribosomes and contribute to stress recovery in Arabidopsis when induced during the last phase of ER stress.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s11816-022-00797-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0472-4458</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-5466 |
ispartof | Plant biotechnology reports, 2022-12, Vol.16 (6), p.665-681 |
issn | 1863-5466 1863-5474 |
language | eng |
recordid | cdi_proquest_journals_2755144592 |
source | SpringerNature Journals |
subjects | Agriculture Arabidopsis Biomedical and Life Sciences Biotechnology Cell Biology Life Sciences mRNA Mutants Myc protein Original Article Pathogenesis Plant Biochemistry Plant Sciences Protein biosynthesis Protein folding Protein synthesis Proteins Recovery Ribonucleic acid Ribosomes RNA Tunicamycin |
title | P58IPK facilitates plant recovery from ER stress by enhancing protein synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=P58IPK%20facilitates%20plant%20recovery%20from%20ER%20stress%20by%20enhancing%20protein%20synthesis&rft.jtitle=Plant%20biotechnology%20reports&rft.au=Ko,%20Ki%20Seong&rft.date=2022-12-01&rft.volume=16&rft.issue=6&rft.spage=665&rft.epage=681&rft.pages=665-681&rft.issn=1863-5466&rft.eissn=1863-5474&rft_id=info:doi/10.1007/s11816-022-00797-3&rft_dat=%3Cproquest_cross%3E2755144592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755144592&rft_id=info:pmid/&rfr_iscdi=true |