Modelling of human exhaled sprays and aerosols to enable real-time estimation of spatially-resolved infection risk in indoor environments
A numerical framework for the 'real-time' estimation of the infection risk from airborne diseases (e.g., SARS-CoV-2) in indoor spaces such as hospitals, restaurants, cinemas or teaching rooms is proposed. The developed model is based on the use of computational fluid dynamics as a pre-proc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fredrich, Daniel Akbar, Aliyah M Muhammad Faieq bin Mohd Fadzil Giorgallis, Afxentis Kruse, Alexander Liniger, Noah Papachristodoulou, Lazaros Giusti, Andrea |
description | A numerical framework for the 'real-time' estimation of the infection risk from airborne diseases (e.g., SARS-CoV-2) in indoor spaces such as hospitals, restaurants, cinemas or teaching rooms is proposed. The developed model is based on the use of computational fluid dynamics as a pre-processor to obtain the time-averaged ventilation pattern inside a room, and a post-processing tool for the computation of the dispersion of sprays and aerosols emitted by its occupants in 'real time'. The model can predict the dispersion and concentration of droplets carrying viable viral copies in the air, the contamination of surfaces, and the related spatially-resolved infection risk. It may therefore provide useful information for the management of indoor environments in terms of, e.g., maximum occupancy, air changes per hour and cleaning of surfaces. This work describes the fundamentals of the model and its main characteristics. The model was developed using open-source software and is conceived to be simple, user-friendly and highly automated to enable any potential user to perform estimations of the local infection risk. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2754997889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754997889</sourcerecordid><originalsourceid>FETCH-proquest_journals_27549978893</originalsourceid><addsrcrecordid>eNqNjcFKxFAMRR-CMIPOPwRcF-rr1LZrUdy4cz9EmzpvJk1q0g7OJ_jXPsUPEAI34d57chHWsapui3Yb4yps3A9lWca7JtZ1tQ5fz9oTc5J30AH2y4gC9LlHph58Mjw7oPSAZOrKDrMCCb4ygRFyMaeRgDwLzknlh-FTXpH5XBjlyimDkgz09utb8mM-8_SqllGnZCojyezX4XJAdtr86VW4eXx4uX8qJtOPJf_YHXQxydYuNvW265q27ar_pb4B9JVVmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754997889</pqid></control><display><type>article</type><title>Modelling of human exhaled sprays and aerosols to enable real-time estimation of spatially-resolved infection risk in indoor environments</title><source>Free E- Journals</source><creator>Fredrich, Daniel ; Akbar, Aliyah M ; Muhammad Faieq bin Mohd Fadzil ; Giorgallis, Afxentis ; Kruse, Alexander ; Liniger, Noah ; Papachristodoulou, Lazaros ; Giusti, Andrea</creator><creatorcontrib>Fredrich, Daniel ; Akbar, Aliyah M ; Muhammad Faieq bin Mohd Fadzil ; Giorgallis, Afxentis ; Kruse, Alexander ; Liniger, Noah ; Papachristodoulou, Lazaros ; Giusti, Andrea</creatorcontrib><description>A numerical framework for the 'real-time' estimation of the infection risk from airborne diseases (e.g., SARS-CoV-2) in indoor spaces such as hospitals, restaurants, cinemas or teaching rooms is proposed. The developed model is based on the use of computational fluid dynamics as a pre-processor to obtain the time-averaged ventilation pattern inside a room, and a post-processing tool for the computation of the dispersion of sprays and aerosols emitted by its occupants in 'real time'. The model can predict the dispersion and concentration of droplets carrying viable viral copies in the air, the contamination of surfaces, and the related spatially-resolved infection risk. It may therefore provide useful information for the management of indoor environments in terms of, e.g., maximum occupancy, air changes per hour and cleaning of surfaces. This work describes the fundamentals of the model and its main characteristics. The model was developed using open-source software and is conceived to be simple, user-friendly and highly automated to enable any potential user to perform estimations of the local infection risk.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aerosols ; Airborne infection ; Computational fluid dynamics ; Dispersion ; Indoor environments ; Infections ; Information management ; Microprocessors ; Real time ; Risk ; Severe acute respiratory syndrome coronavirus 2 ; Viral diseases</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fredrich, Daniel</creatorcontrib><creatorcontrib>Akbar, Aliyah M</creatorcontrib><creatorcontrib>Muhammad Faieq bin Mohd Fadzil</creatorcontrib><creatorcontrib>Giorgallis, Afxentis</creatorcontrib><creatorcontrib>Kruse, Alexander</creatorcontrib><creatorcontrib>Liniger, Noah</creatorcontrib><creatorcontrib>Papachristodoulou, Lazaros</creatorcontrib><creatorcontrib>Giusti, Andrea</creatorcontrib><title>Modelling of human exhaled sprays and aerosols to enable real-time estimation of spatially-resolved infection risk in indoor environments</title><title>arXiv.org</title><description>A numerical framework for the 'real-time' estimation of the infection risk from airborne diseases (e.g., SARS-CoV-2) in indoor spaces such as hospitals, restaurants, cinemas or teaching rooms is proposed. The developed model is based on the use of computational fluid dynamics as a pre-processor to obtain the time-averaged ventilation pattern inside a room, and a post-processing tool for the computation of the dispersion of sprays and aerosols emitted by its occupants in 'real time'. The model can predict the dispersion and concentration of droplets carrying viable viral copies in the air, the contamination of surfaces, and the related spatially-resolved infection risk. It may therefore provide useful information for the management of indoor environments in terms of, e.g., maximum occupancy, air changes per hour and cleaning of surfaces. This work describes the fundamentals of the model and its main characteristics. The model was developed using open-source software and is conceived to be simple, user-friendly and highly automated to enable any potential user to perform estimations of the local infection risk.</description><subject>Aerosols</subject><subject>Airborne infection</subject><subject>Computational fluid dynamics</subject><subject>Dispersion</subject><subject>Indoor environments</subject><subject>Infections</subject><subject>Information management</subject><subject>Microprocessors</subject><subject>Real time</subject><subject>Risk</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Viral diseases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjcFKxFAMRR-CMIPOPwRcF-rr1LZrUdy4cz9EmzpvJk1q0g7OJ_jXPsUPEAI34d57chHWsapui3Yb4yps3A9lWca7JtZ1tQ5fz9oTc5J30AH2y4gC9LlHph58Mjw7oPSAZOrKDrMCCb4ygRFyMaeRgDwLzknlh-FTXpH5XBjlyimDkgz09utb8mM-8_SqllGnZCojyezX4XJAdtr86VW4eXx4uX8qJtOPJf_YHXQxydYuNvW265q27ar_pb4B9JVVmQ</recordid><startdate>20221214</startdate><enddate>20221214</enddate><creator>Fredrich, Daniel</creator><creator>Akbar, Aliyah M</creator><creator>Muhammad Faieq bin Mohd Fadzil</creator><creator>Giorgallis, Afxentis</creator><creator>Kruse, Alexander</creator><creator>Liniger, Noah</creator><creator>Papachristodoulou, Lazaros</creator><creator>Giusti, Andrea</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221214</creationdate><title>Modelling of human exhaled sprays and aerosols to enable real-time estimation of spatially-resolved infection risk in indoor environments</title><author>Fredrich, Daniel ; Akbar, Aliyah M ; Muhammad Faieq bin Mohd Fadzil ; Giorgallis, Afxentis ; Kruse, Alexander ; Liniger, Noah ; Papachristodoulou, Lazaros ; Giusti, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27549978893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerosols</topic><topic>Airborne infection</topic><topic>Computational fluid dynamics</topic><topic>Dispersion</topic><topic>Indoor environments</topic><topic>Infections</topic><topic>Information management</topic><topic>Microprocessors</topic><topic>Real time</topic><topic>Risk</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Fredrich, Daniel</creatorcontrib><creatorcontrib>Akbar, Aliyah M</creatorcontrib><creatorcontrib>Muhammad Faieq bin Mohd Fadzil</creatorcontrib><creatorcontrib>Giorgallis, Afxentis</creatorcontrib><creatorcontrib>Kruse, Alexander</creatorcontrib><creatorcontrib>Liniger, Noah</creatorcontrib><creatorcontrib>Papachristodoulou, Lazaros</creatorcontrib><creatorcontrib>Giusti, Andrea</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fredrich, Daniel</au><au>Akbar, Aliyah M</au><au>Muhammad Faieq bin Mohd Fadzil</au><au>Giorgallis, Afxentis</au><au>Kruse, Alexander</au><au>Liniger, Noah</au><au>Papachristodoulou, Lazaros</au><au>Giusti, Andrea</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modelling of human exhaled sprays and aerosols to enable real-time estimation of spatially-resolved infection risk in indoor environments</atitle><jtitle>arXiv.org</jtitle><date>2022-12-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A numerical framework for the 'real-time' estimation of the infection risk from airborne diseases (e.g., SARS-CoV-2) in indoor spaces such as hospitals, restaurants, cinemas or teaching rooms is proposed. The developed model is based on the use of computational fluid dynamics as a pre-processor to obtain the time-averaged ventilation pattern inside a room, and a post-processing tool for the computation of the dispersion of sprays and aerosols emitted by its occupants in 'real time'. The model can predict the dispersion and concentration of droplets carrying viable viral copies in the air, the contamination of surfaces, and the related spatially-resolved infection risk. It may therefore provide useful information for the management of indoor environments in terms of, e.g., maximum occupancy, air changes per hour and cleaning of surfaces. This work describes the fundamentals of the model and its main characteristics. The model was developed using open-source software and is conceived to be simple, user-friendly and highly automated to enable any potential user to perform estimations of the local infection risk.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2754997889 |
source | Free E- Journals |
subjects | Aerosols Airborne infection Computational fluid dynamics Dispersion Indoor environments Infections Information management Microprocessors Real time Risk Severe acute respiratory syndrome coronavirus 2 Viral diseases |
title | Modelling of human exhaled sprays and aerosols to enable real-time estimation of spatially-resolved infection risk in indoor environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modelling%20of%20human%20exhaled%20sprays%20and%20aerosols%20to%20enable%20real-time%20estimation%20of%20spatially-resolved%20infection%20risk%20in%20indoor%20environments&rft.jtitle=arXiv.org&rft.au=Fredrich,%20Daniel&rft.date=2022-12-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2754997889%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754997889&rft_id=info:pmid/&rfr_iscdi=true |