Novel superposed kinklike and pulselike solutions for several nonlocal nonlinear equations

We show that a number of nonlocal nonlinear equations, including the Ablowitz–Musslimani and Yang variant of the nonlocal nonlinear Schrödinger (NLS) equation, the nonlocal modified Korteweg de Vries (mKdV) equation, and the nonlocal Hirota equation, admit novel kinklike and pulselike superposed per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-12, Vol.63 (12)
Hauptverfasser: Khare, Avinash, Saxena, Avadh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of mathematical physics
container_volume 63
creator Khare, Avinash
Saxena, Avadh
description We show that a number of nonlocal nonlinear equations, including the Ablowitz–Musslimani and Yang variant of the nonlocal nonlinear Schrödinger (NLS) equation, the nonlocal modified Korteweg de Vries (mKdV) equation, and the nonlocal Hirota equation, admit novel kinklike and pulselike superposed periodic solutions. Furthermore, we show that the nonlocal mKdV equation also admits the superposed (hyperbolic) kink–antikink solution. In addition, we show that while the nonlocal Ablowitz–Musslimani variant of the NLS admits complex parity-time reversal-invariant kink and pulse solutions, neither the local NLS nor the Yang variant of the nonlocal NLS admits such solutions. Finally, except for the Yang variant of the nonlocal NLS, we show that the other three nonlocal equations admit both the kink and pulse solutions in the same model.
doi_str_mv 10.1063/5.0109384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754978407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754978407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f318ca1d69388315c86d873d6f7b43c614bc673965ffd1e3ce765d0a2cbe18e73</originalsourceid><addsrcrecordid>eNqdkD9PwzAQxS0EEqUw8A0smEBKsWPHcUZU8U-qYIGFxXLts0gb7NROKvHtSZtK7Ex3J_3u3XuH0CUlM0oEuytmhJKKSX6EJpTIKitFIY_RhJA8z3Iu5Sk6S2lFCKWS8wn6fA1baHDqW4htSGDxuvbrpl4D1t7itm8S7KcUmr6rg0_YhYgTbCHqBvvgm2AOTe1BRwybXu_Bc3Ti9LB-cahT9PH48D5_zhZvTy_z-0VmmKy6zDEqjaZWDK4lo4WRwsqSWeHKJWdGUL40omSVKJyzFJiBIZIlOjdLoBJKNkVXo25IXa2SqTswXyZ4D6ZTtCKFKOkAXY9QG8Omh9SpVeijH3ypvCx4VUpOdlI3I2ViSCmCU22sv3X8UZSo3X9VoQ7_Hdjbkd1d3Cf-H7wN8Q9UrXXsF_-5ids</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754978407</pqid></control><display><type>article</type><title>Novel superposed kinklike and pulselike solutions for several nonlocal nonlinear equations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Khare, Avinash ; Saxena, Avadh</creator><creatorcontrib>Khare, Avinash ; Saxena, Avadh</creatorcontrib><description>We show that a number of nonlocal nonlinear equations, including the Ablowitz–Musslimani and Yang variant of the nonlocal nonlinear Schrödinger (NLS) equation, the nonlocal modified Korteweg de Vries (mKdV) equation, and the nonlocal Hirota equation, admit novel kinklike and pulselike superposed periodic solutions. Furthermore, we show that the nonlocal mKdV equation also admits the superposed (hyperbolic) kink–antikink solution. In addition, we show that while the nonlocal Ablowitz–Musslimani variant of the NLS admits complex parity-time reversal-invariant kink and pulse solutions, neither the local NLS nor the Yang variant of the nonlocal NLS admits such solutions. Finally, except for the Yang variant of the nonlocal NLS, we show that the other three nonlocal equations admit both the kink and pulse solutions in the same model.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0109384</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Nonlinear equations ; Physics</subject><ispartof>Journal of mathematical physics, 2022-12, Vol.63 (12)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f318ca1d69388315c86d873d6f7b43c614bc673965ffd1e3ce765d0a2cbe18e73</citedby><cites>FETCH-LOGICAL-c389t-f318ca1d69388315c86d873d6f7b43c614bc673965ffd1e3ce765d0a2cbe18e73</cites><orcidid>0000-0003-3216-3835 ; 0000-0002-3374-3236 ; 0000000332163835 ; 0000000233743236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0109384$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1905671$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khare, Avinash</creatorcontrib><creatorcontrib>Saxena, Avadh</creatorcontrib><title>Novel superposed kinklike and pulselike solutions for several nonlocal nonlinear equations</title><title>Journal of mathematical physics</title><description>We show that a number of nonlocal nonlinear equations, including the Ablowitz–Musslimani and Yang variant of the nonlocal nonlinear Schrödinger (NLS) equation, the nonlocal modified Korteweg de Vries (mKdV) equation, and the nonlocal Hirota equation, admit novel kinklike and pulselike superposed periodic solutions. Furthermore, we show that the nonlocal mKdV equation also admits the superposed (hyperbolic) kink–antikink solution. In addition, we show that while the nonlocal Ablowitz–Musslimani variant of the NLS admits complex parity-time reversal-invariant kink and pulse solutions, neither the local NLS nor the Yang variant of the nonlocal NLS admits such solutions. Finally, except for the Yang variant of the nonlocal NLS, we show that the other three nonlocal equations admit both the kink and pulse solutions in the same model.</description><subject>Nonlinear equations</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkD9PwzAQxS0EEqUw8A0smEBKsWPHcUZU8U-qYIGFxXLts0gb7NROKvHtSZtK7Ex3J_3u3XuH0CUlM0oEuytmhJKKSX6EJpTIKitFIY_RhJA8z3Iu5Sk6S2lFCKWS8wn6fA1baHDqW4htSGDxuvbrpl4D1t7itm8S7KcUmr6rg0_YhYgTbCHqBvvgm2AOTe1BRwybXu_Bc3Ti9LB-cahT9PH48D5_zhZvTy_z-0VmmKy6zDEqjaZWDK4lo4WRwsqSWeHKJWdGUL40omSVKJyzFJiBIZIlOjdLoBJKNkVXo25IXa2SqTswXyZ4D6ZTtCKFKOkAXY9QG8Omh9SpVeijH3ypvCx4VUpOdlI3I2ViSCmCU22sv3X8UZSo3X9VoQ7_Hdjbkd1d3Cf-H7wN8Q9UrXXsF_-5ids</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Khare, Avinash</creator><creator>Saxena, Avadh</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3216-3835</orcidid><orcidid>https://orcid.org/0000-0002-3374-3236</orcidid><orcidid>https://orcid.org/0000000332163835</orcidid><orcidid>https://orcid.org/0000000233743236</orcidid></search><sort><creationdate>20221201</creationdate><title>Novel superposed kinklike and pulselike solutions for several nonlocal nonlinear equations</title><author>Khare, Avinash ; Saxena, Avadh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f318ca1d69388315c86d873d6f7b43c614bc673965ffd1e3ce765d0a2cbe18e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Nonlinear equations</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khare, Avinash</creatorcontrib><creatorcontrib>Saxena, Avadh</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khare, Avinash</au><au>Saxena, Avadh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel superposed kinklike and pulselike solutions for several nonlocal nonlinear equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>63</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We show that a number of nonlocal nonlinear equations, including the Ablowitz–Musslimani and Yang variant of the nonlocal nonlinear Schrödinger (NLS) equation, the nonlocal modified Korteweg de Vries (mKdV) equation, and the nonlocal Hirota equation, admit novel kinklike and pulselike superposed periodic solutions. Furthermore, we show that the nonlocal mKdV equation also admits the superposed (hyperbolic) kink–antikink solution. In addition, we show that while the nonlocal Ablowitz–Musslimani variant of the NLS admits complex parity-time reversal-invariant kink and pulse solutions, neither the local NLS nor the Yang variant of the nonlocal NLS admits such solutions. Finally, except for the Yang variant of the nonlocal NLS, we show that the other three nonlocal equations admit both the kink and pulse solutions in the same model.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109384</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3216-3835</orcidid><orcidid>https://orcid.org/0000-0002-3374-3236</orcidid><orcidid>https://orcid.org/0000000332163835</orcidid><orcidid>https://orcid.org/0000000233743236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2022-12, Vol.63 (12)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2754978407
source AIP Journals Complete; Alma/SFX Local Collection
subjects Nonlinear equations
Physics
title Novel superposed kinklike and pulselike solutions for several nonlocal nonlinear equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20superposed%20kinklike%20and%20pulselike%20solutions%20for%20several%20nonlocal%20nonlinear%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Khare,%20Avinash&rft.date=2022-12-01&rft.volume=63&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0109384&rft_dat=%3Cproquest_cross%3E2754978407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754978407&rft_id=info:pmid/&rfr_iscdi=true