Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production
Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used tec...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2023-02, Vol.19 (2), p.2039-2048 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2048 |
---|---|
container_issue | 2 |
container_start_page | 2039 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Zhang, Jing Luo, Bin Li, Fuqian Niu, Xingman Zhang, Qican Wang, Yajun Chen, Xiangcheng |
description | Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used techniques heavily rely on multiple exposures for optimal fusion but do not fit to high-efficiency monitoring. To alleviate this reliance, we propose a novel single-exposure method called deep sinusoidal prior (DSP) for damaged phase recovery of highly reflective surfaces. Specifically, the sinusoidal hypothesis is instilled into an untrained deep neural network (DNN) as two-stream information, in order to bypass the problem of brightness enhancement. Utilizing elaborately designed loss functions, this approach enables us to restore the accurate phase encoding by fitting the DNN to two-stream sinusoidal priors. Experimental results demonstrate that the proposed DSP method has superior performances on damaged phase recovery requiring no training samples. For instance, measuring a standard workpiece, absolute errors of the DSP method have been decreased substantially (81.69% and 59.49%) compared with the direct measurement and achieved similar accuracy (0.0754 versus 0.0744 mm) compared with the reference. Most strikingly, the proposed method, for the first time, demonstrates a new perspective of recovering the reliable phase from a degraded one itself, contributing to the superior generalization capability insensitive to fringe frequencies, imaging settings, and variant scenes. |
doi_str_mv | 10.1109/TII.2022.3185660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2754960244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9810196</ieee_id><sourcerecordid>2754960244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1264432875f688e50fb9c60a36f953bb36a1bed9bcb27d9b3b53c5604325be1f3</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvgi8BnztvkiZtHmVOHSgOp8-l7W400jVd0g4Ff7yZEx8u514437lwCDlnMGEM9NXLfD7hwPlEsFwqBQdkxHTKEgAJh3GXkiWCgzgmJyF8AIgMhB6R76Vt3xpMZp-dC4NH-tT1ti4b-ojl7l5j21Nn6L19e2--6DOaBuvebpEuB2_KGgPd2pLeIHY0Rg3B2VWkF946T02cqVt3DX7S2Waw3W_awrvVEDNce0qOTNkEPPvTMXm9nb1M75OHp7v59PohqblmfcK4SlPB80walecowVS6VlAKZbQUVSVUySpc6aqueBZFVFLUUkFkZIXMiDG53Od23m0GDH3x4QbfxpcFz2SqFfD4YExg76q9C8GjKTpv16X_KhgUu46L2HGx67j46zgiF3vEIuK_XecMmFbiBy7UeTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754960244</pqid></control><display><type>article</type><title>Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jing ; Luo, Bin ; Li, Fuqian ; Niu, Xingman ; Zhang, Qican ; Wang, Yajun ; Chen, Xiangcheng</creator><creatorcontrib>Zhang, Jing ; Luo, Bin ; Li, Fuqian ; Niu, Xingman ; Zhang, Qican ; Wang, Yajun ; Chen, Xiangcheng</creatorcontrib><description>Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used techniques heavily rely on multiple exposures for optimal fusion but do not fit to high-efficiency monitoring. To alleviate this reliance, we propose a novel single-exposure method called deep sinusoidal prior (DSP) for damaged phase recovery of highly reflective surfaces. Specifically, the sinusoidal hypothesis is instilled into an untrained deep neural network (DNN) as two-stream information, in order to bypass the problem of brightness enhancement. Utilizing elaborately designed loss functions, this approach enables us to restore the accurate phase encoding by fitting the DNN to two-stream sinusoidal priors. Experimental results demonstrate that the proposed DSP method has superior performances on damaged phase recovery requiring no training samples. For instance, measuring a standard workpiece, absolute errors of the DSP method have been decreased substantially (81.69% and 59.49%) compared with the direct measurement and achieved similar accuracy (0.0754 versus 0.0744 mm) compared with the reference. Most strikingly, the proposed method, for the first time, demonstrates a new perspective of recovering the reliable phase from a degraded one itself, contributing to the superior generalization capability insensitive to fringe frequencies, imaging settings, and variant scenes.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3185660</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Cameras ; Convolutional neural networks ; Deep learning ; Exposure ; high dynamic range ; Informatics ; Metal surfaces ; Optical measurement ; Optical properties ; phase representation ; phase retrieval ; Recovery ; Sine waves ; structured light ; Supervised learning ; Task complexity ; three-dimensional (3-D) measurement ; Three-dimensional displays ; Training ; untrained network ; Workpieces</subject><ispartof>IEEE transactions on industrial informatics, 2023-02, Vol.19 (2), p.2039-2048</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1264432875f688e50fb9c60a36f953bb36a1bed9bcb27d9b3b53c5604325be1f3</citedby><cites>FETCH-LOGICAL-c291t-1264432875f688e50fb9c60a36f953bb36a1bed9bcb27d9b3b53c5604325be1f3</cites><orcidid>0000-0001-6725-9955 ; 0000-0002-3040-3500 ; 0000-0002-5096-7397 ; 0000-0002-4981-4430 ; 0000-0002-0165-0561 ; 0000-0002-3403-7675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9810196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9810196$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Li, Fuqian</creatorcontrib><creatorcontrib>Niu, Xingman</creatorcontrib><creatorcontrib>Zhang, Qican</creatorcontrib><creatorcontrib>Wang, Yajun</creatorcontrib><creatorcontrib>Chen, Xiangcheng</creatorcontrib><title>Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used techniques heavily rely on multiple exposures for optimal fusion but do not fit to high-efficiency monitoring. To alleviate this reliance, we propose a novel single-exposure method called deep sinusoidal prior (DSP) for damaged phase recovery of highly reflective surfaces. Specifically, the sinusoidal hypothesis is instilled into an untrained deep neural network (DNN) as two-stream information, in order to bypass the problem of brightness enhancement. Utilizing elaborately designed loss functions, this approach enables us to restore the accurate phase encoding by fitting the DNN to two-stream sinusoidal priors. Experimental results demonstrate that the proposed DSP method has superior performances on damaged phase recovery requiring no training samples. For instance, measuring a standard workpiece, absolute errors of the DSP method have been decreased substantially (81.69% and 59.49%) compared with the direct measurement and achieved similar accuracy (0.0754 versus 0.0744 mm) compared with the reference. Most strikingly, the proposed method, for the first time, demonstrates a new perspective of recovering the reliable phase from a degraded one itself, contributing to the superior generalization capability insensitive to fringe frequencies, imaging settings, and variant scenes.</description><subject>Artificial neural networks</subject><subject>Cameras</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Exposure</subject><subject>high dynamic range</subject><subject>Informatics</subject><subject>Metal surfaces</subject><subject>Optical measurement</subject><subject>Optical properties</subject><subject>phase representation</subject><subject>phase retrieval</subject><subject>Recovery</subject><subject>Sine waves</subject><subject>structured light</subject><subject>Supervised learning</subject><subject>Task complexity</subject><subject>three-dimensional (3-D) measurement</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>untrained network</subject><subject>Workpieces</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKfvgi8BnztvkiZtHmVOHSgOp8-l7W400jVd0g4Ff7yZEx8u514437lwCDlnMGEM9NXLfD7hwPlEsFwqBQdkxHTKEgAJh3GXkiWCgzgmJyF8AIgMhB6R76Vt3xpMZp-dC4NH-tT1ti4b-ojl7l5j21Nn6L19e2--6DOaBuvebpEuB2_KGgPd2pLeIHY0Rg3B2VWkF946T02cqVt3DX7S2Waw3W_awrvVEDNce0qOTNkEPPvTMXm9nb1M75OHp7v59PohqblmfcK4SlPB80walecowVS6VlAKZbQUVSVUySpc6aqueBZFVFLUUkFkZIXMiDG53Od23m0GDH3x4QbfxpcFz2SqFfD4YExg76q9C8GjKTpv16X_KhgUu46L2HGx67j46zgiF3vEIuK_XecMmFbiBy7UeTg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhang, Jing</creator><creator>Luo, Bin</creator><creator>Li, Fuqian</creator><creator>Niu, Xingman</creator><creator>Zhang, Qican</creator><creator>Wang, Yajun</creator><creator>Chen, Xiangcheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6725-9955</orcidid><orcidid>https://orcid.org/0000-0002-3040-3500</orcidid><orcidid>https://orcid.org/0000-0002-5096-7397</orcidid><orcidid>https://orcid.org/0000-0002-4981-4430</orcidid><orcidid>https://orcid.org/0000-0002-0165-0561</orcidid><orcidid>https://orcid.org/0000-0002-3403-7675</orcidid></search><sort><creationdate>20230201</creationdate><title>Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production</title><author>Zhang, Jing ; Luo, Bin ; Li, Fuqian ; Niu, Xingman ; Zhang, Qican ; Wang, Yajun ; Chen, Xiangcheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1264432875f688e50fb9c60a36f953bb36a1bed9bcb27d9b3b53c5604325be1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cameras</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Exposure</topic><topic>high dynamic range</topic><topic>Informatics</topic><topic>Metal surfaces</topic><topic>Optical measurement</topic><topic>Optical properties</topic><topic>phase representation</topic><topic>phase retrieval</topic><topic>Recovery</topic><topic>Sine waves</topic><topic>structured light</topic><topic>Supervised learning</topic><topic>Task complexity</topic><topic>three-dimensional (3-D) measurement</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>untrained network</topic><topic>Workpieces</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Luo, Bin</creatorcontrib><creatorcontrib>Li, Fuqian</creatorcontrib><creatorcontrib>Niu, Xingman</creatorcontrib><creatorcontrib>Zhang, Qican</creatorcontrib><creatorcontrib>Wang, Yajun</creatorcontrib><creatorcontrib>Chen, Xiangcheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jing</au><au>Luo, Bin</au><au>Li, Fuqian</au><au>Niu, Xingman</au><au>Zhang, Qican</au><au>Wang, Yajun</au><au>Chen, Xiangcheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>19</volume><issue>2</issue><spage>2039</spage><epage>2048</epage><pages>2039-2048</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Three-dimensional (3-D) measurement of metal surfaces is one of the fundamental tasks for product life-cycle management of complex equipment, which is meaningful but challenging due to its optical characteristics of high reflectivity. To reliably reconstruct 3-D metal surfaces, the commonly used techniques heavily rely on multiple exposures for optimal fusion but do not fit to high-efficiency monitoring. To alleviate this reliance, we propose a novel single-exposure method called deep sinusoidal prior (DSP) for damaged phase recovery of highly reflective surfaces. Specifically, the sinusoidal hypothesis is instilled into an untrained deep neural network (DNN) as two-stream information, in order to bypass the problem of brightness enhancement. Utilizing elaborately designed loss functions, this approach enables us to restore the accurate phase encoding by fitting the DNN to two-stream sinusoidal priors. Experimental results demonstrate that the proposed DSP method has superior performances on damaged phase recovery requiring no training samples. For instance, measuring a standard workpiece, absolute errors of the DSP method have been decreased substantially (81.69% and 59.49%) compared with the direct measurement and achieved similar accuracy (0.0754 versus 0.0744 mm) compared with the reference. Most strikingly, the proposed method, for the first time, demonstrates a new perspective of recovering the reliable phase from a degraded one itself, contributing to the superior generalization capability insensitive to fringe frequencies, imaging settings, and variant scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3185660</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6725-9955</orcidid><orcidid>https://orcid.org/0000-0002-3040-3500</orcidid><orcidid>https://orcid.org/0000-0002-5096-7397</orcidid><orcidid>https://orcid.org/0000-0002-4981-4430</orcidid><orcidid>https://orcid.org/0000-0002-0165-0561</orcidid><orcidid>https://orcid.org/0000-0002-3403-7675</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-02, Vol.19 (2), p.2039-2048 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2754960244 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cameras Convolutional neural networks Deep learning Exposure high dynamic range Informatics Metal surfaces Optical measurement Optical properties phase representation phase retrieval Recovery Sine waves structured light Supervised learning Task complexity three-dimensional (3-D) measurement Three-dimensional displays Training untrained network Workpieces |
title | Single-Exposure Optical Measurement of Highly Reflective Surfaces via Deep Sinusoidal Prior for Complex Equipment Production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Exposure%20Optical%20Measurement%20of%20Highly%20Reflective%20Surfaces%20via%20Deep%20Sinusoidal%20Prior%20for%20Complex%20Equipment%20Production&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Zhang,%20Jing&rft.date=2023-02-01&rft.volume=19&rft.issue=2&rft.spage=2039&rft.epage=2048&rft.pages=2039-2048&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3185660&rft_dat=%3Cproquest_RIE%3E2754960244%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754960244&rft_id=info:pmid/&rft_ieee_id=9810196&rfr_iscdi=true |