New Directions in Weed Management and Research Using 3D Imaging

Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed science 2022-11, Vol.70 (6), p.641-647
Hauptverfasser: Dobbs, April M., Ginn, Daniel, Skovsen, Søren Kelstrup, Bagavathiannan, Muthukumar V., Mirsky, Steven B., Reberg-Horton, Chris S., Leon, Ramon G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 6
container_start_page 641
container_title Weed science
container_volume 70
creator Dobbs, April M.
Ginn, Daniel
Skovsen, Søren Kelstrup
Bagavathiannan, Muthukumar V.
Mirsky, Steven B.
Reberg-Horton, Chris S.
Leon, Ramon G.
description Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging mitigates these challenges by using depth data to create accurate plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed populations in the field and target weeds for site-specific weed management, including automated precision weed control. This technology will also help growers monitor cover crop performance for weed suppression and detect late-season weed escapes for timely control, thereby reducing seedbank persistence and slowing the evolution of herbicide resistance. In addition to its many applications in weed management, 3D imaging offers weed researchers new tools for understanding spatial and temporal heterogeneity in weed responses to integrated weed management tactics, including weed–crop competition and weed community dynamics. This technology will provide simple and low-cost tools for growers and researchers alike to better understand weed responses in diverse agronomic contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolution, and improving environmental health.
doi_str_mv 10.1017/wsc.2022.56
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754803871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_wsc_2022_56</cupid><sourcerecordid>2754803871</sourcerecordid><originalsourceid>FETCH-LOGICAL-b370t-a334b1d722de6e49dae6b4a8476466599bae2e4861f17412b1d1b96bf95d3f803</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pyS8Q8CTSmqRJ2pxENv8MpoI4PIakfVs7bDqTjuG3N2MDL-Ip7-HH8755EDqnJKWE5tebUKaMMJYKeYBGVAiSsFyoQzQihGcJzbk4RichLAmhklE1QjfPsMHT1kM5tL0LuHX4HaDCT8aZBjpwAzauwq8QwPjyAy9C6xqcTfGsM00cT9FRbT4DnO3fMVrc371NHpP5y8NscjtPbJaTITFZxi2tcsYqkMBVZUBabgqeSy6lUMoaYMALSet4JGXRUqukrZWosrog2Rhd7HJXvv9aQxj0sl97F1fq-EMeRZHTqK52qvR9CB5qvfJtZ_y3pkRvG9KxIb1tSAsZdbLXprO-rRr4Df3bX-68bfvewb_ZP-37c1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754803871</pqid></control><display><type>article</type><title>New Directions in Weed Management and Research Using 3D Imaging</title><source>Cambridge University Press Journals Complete</source><creator>Dobbs, April M. ; Ginn, Daniel ; Skovsen, Søren Kelstrup ; Bagavathiannan, Muthukumar V. ; Mirsky, Steven B. ; Reberg-Horton, Chris S. ; Leon, Ramon G.</creator><creatorcontrib>Dobbs, April M. ; Ginn, Daniel ; Skovsen, Søren Kelstrup ; Bagavathiannan, Muthukumar V. ; Mirsky, Steven B. ; Reberg-Horton, Chris S. ; Leon, Ramon G.</creatorcontrib><description>Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging mitigates these challenges by using depth data to create accurate plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed populations in the field and target weeds for site-specific weed management, including automated precision weed control. This technology will also help growers monitor cover crop performance for weed suppression and detect late-season weed escapes for timely control, thereby reducing seedbank persistence and slowing the evolution of herbicide resistance. In addition to its many applications in weed management, 3D imaging offers weed researchers new tools for understanding spatial and temporal heterogeneity in weed responses to integrated weed management tactics, including weed–crop competition and weed community dynamics. This technology will provide simple and low-cost tools for growers and researchers alike to better understand weed responses in diverse agronomic contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolution, and improving environmental health.</description><identifier>ISSN: 0043-1745</identifier><identifier>EISSN: 1550-2759</identifier><identifier>DOI: 10.1017/wsc.2022.56</identifier><language>eng</language><publisher>New York, USA: The Weed Science Society of America</publisher><subject>Accuracy ; Agricultural practices ; Automation ; Biomass ; Cover crops ; Disease management ; Environmental health ; Evolution ; Herbicide resistance ; Herbicides ; Heterogeneity ; Imaging ; Integrated weed management ; Photogrammetry ; point cloud ; Populations ; Production increases ; Real time ; Remote sensing ; REVIEW ; Seed banks ; Seeds ; stereo vision ; structure-from-motion ; Tactics ; Three dimensional imaging ; Three dimensional models ; Unmanned aerial vehicles ; Weed control ; Weeds</subject><ispartof>Weed science, 2022-11, Vol.70 (6), p.641-647</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.</rights><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America</rights><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b370t-a334b1d722de6e49dae6b4a8476466599bae2e4861f17412b1d1b96bf95d3f803</citedby><cites>FETCH-LOGICAL-b370t-a334b1d722de6e49dae6b4a8476466599bae2e4861f17412b1d1b96bf95d3f803</cites><orcidid>0000-0002-8549-7145 ; 0000-0001-6222-3005 ; 0000-0001-5002-106X ; 0000-0002-3207-0420 ; 0000-0002-1924-3331 ; 0000-0002-1107-7148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S004317452200056X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Dobbs, April M.</creatorcontrib><creatorcontrib>Ginn, Daniel</creatorcontrib><creatorcontrib>Skovsen, Søren Kelstrup</creatorcontrib><creatorcontrib>Bagavathiannan, Muthukumar V.</creatorcontrib><creatorcontrib>Mirsky, Steven B.</creatorcontrib><creatorcontrib>Reberg-Horton, Chris S.</creatorcontrib><creatorcontrib>Leon, Ramon G.</creatorcontrib><title>New Directions in Weed Management and Research Using 3D Imaging</title><title>Weed science</title><addtitle>Weed Sci</addtitle><description>Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging mitigates these challenges by using depth data to create accurate plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed populations in the field and target weeds for site-specific weed management, including automated precision weed control. This technology will also help growers monitor cover crop performance for weed suppression and detect late-season weed escapes for timely control, thereby reducing seedbank persistence and slowing the evolution of herbicide resistance. In addition to its many applications in weed management, 3D imaging offers weed researchers new tools for understanding spatial and temporal heterogeneity in weed responses to integrated weed management tactics, including weed–crop competition and weed community dynamics. This technology will provide simple and low-cost tools for growers and researchers alike to better understand weed responses in diverse agronomic contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolution, and improving environmental health.</description><subject>Accuracy</subject><subject>Agricultural practices</subject><subject>Automation</subject><subject>Biomass</subject><subject>Cover crops</subject><subject>Disease management</subject><subject>Environmental health</subject><subject>Evolution</subject><subject>Herbicide resistance</subject><subject>Herbicides</subject><subject>Heterogeneity</subject><subject>Imaging</subject><subject>Integrated weed management</subject><subject>Photogrammetry</subject><subject>point cloud</subject><subject>Populations</subject><subject>Production increases</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>REVIEW</subject><subject>Seed banks</subject><subject>Seeds</subject><subject>stereo vision</subject><subject>structure-from-motion</subject><subject>Tactics</subject><subject>Three dimensional imaging</subject><subject>Three dimensional models</subject><subject>Unmanned aerial vehicles</subject><subject>Weed control</subject><subject>Weeds</subject><issn>0043-1745</issn><issn>1550-2759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90E9LwzAYBvAgCs7pyS8Q8CTSmqRJ2pxENv8MpoI4PIakfVs7bDqTjuG3N2MDL-Ip7-HH8755EDqnJKWE5tebUKaMMJYKeYBGVAiSsFyoQzQihGcJzbk4RichLAmhklE1QjfPsMHT1kM5tL0LuHX4HaDCT8aZBjpwAzauwq8QwPjyAy9C6xqcTfGsM00cT9FRbT4DnO3fMVrc371NHpP5y8NscjtPbJaTITFZxi2tcsYqkMBVZUBabgqeSy6lUMoaYMALSet4JGXRUqukrZWosrog2Rhd7HJXvv9aQxj0sl97F1fq-EMeRZHTqK52qvR9CB5qvfJtZ_y3pkRvG9KxIb1tSAsZdbLXprO-rRr4Df3bX-68bfvewb_ZP-37c1c</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Dobbs, April M.</creator><creator>Ginn, Daniel</creator><creator>Skovsen, Søren Kelstrup</creator><creator>Bagavathiannan, Muthukumar V.</creator><creator>Mirsky, Steven B.</creator><creator>Reberg-Horton, Chris S.</creator><creator>Leon, Ramon G.</creator><general>The Weed Science Society of America</general><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-8549-7145</orcidid><orcidid>https://orcid.org/0000-0001-6222-3005</orcidid><orcidid>https://orcid.org/0000-0001-5002-106X</orcidid><orcidid>https://orcid.org/0000-0002-3207-0420</orcidid><orcidid>https://orcid.org/0000-0002-1924-3331</orcidid><orcidid>https://orcid.org/0000-0002-1107-7148</orcidid></search><sort><creationdate>20221101</creationdate><title>New Directions in Weed Management and Research Using 3D Imaging</title><author>Dobbs, April M. ; Ginn, Daniel ; Skovsen, Søren Kelstrup ; Bagavathiannan, Muthukumar V. ; Mirsky, Steven B. ; Reberg-Horton, Chris S. ; Leon, Ramon G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b370t-a334b1d722de6e49dae6b4a8476466599bae2e4861f17412b1d1b96bf95d3f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Agricultural practices</topic><topic>Automation</topic><topic>Biomass</topic><topic>Cover crops</topic><topic>Disease management</topic><topic>Environmental health</topic><topic>Evolution</topic><topic>Herbicide resistance</topic><topic>Herbicides</topic><topic>Heterogeneity</topic><topic>Imaging</topic><topic>Integrated weed management</topic><topic>Photogrammetry</topic><topic>point cloud</topic><topic>Populations</topic><topic>Production increases</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>REVIEW</topic><topic>Seed banks</topic><topic>Seeds</topic><topic>stereo vision</topic><topic>structure-from-motion</topic><topic>Tactics</topic><topic>Three dimensional imaging</topic><topic>Three dimensional models</topic><topic>Unmanned aerial vehicles</topic><topic>Weed control</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobbs, April M.</creatorcontrib><creatorcontrib>Ginn, Daniel</creatorcontrib><creatorcontrib>Skovsen, Søren Kelstrup</creatorcontrib><creatorcontrib>Bagavathiannan, Muthukumar V.</creatorcontrib><creatorcontrib>Mirsky, Steven B.</creatorcontrib><creatorcontrib>Reberg-Horton, Chris S.</creatorcontrib><creatorcontrib>Leon, Ramon G.</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Weed science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobbs, April M.</au><au>Ginn, Daniel</au><au>Skovsen, Søren Kelstrup</au><au>Bagavathiannan, Muthukumar V.</au><au>Mirsky, Steven B.</au><au>Reberg-Horton, Chris S.</au><au>Leon, Ramon G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Directions in Weed Management and Research Using 3D Imaging</atitle><jtitle>Weed science</jtitle><addtitle>Weed Sci</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>70</volume><issue>6</issue><spage>641</spage><epage>647</epage><pages>641-647</pages><issn>0043-1745</issn><eissn>1550-2759</eissn><abstract>Recent innovations in 3D imaging technology have created unprecedented potential for better understanding weed responses to management tactics. Although traditional 2D imaging methods for mapping weed populations can be limited in the field by factors such as shadows and tissue overlap, 3D imaging mitigates these challenges by using depth data to create accurate plant models. Three-dimensional imaging can be used to generate spatiotemporal maps of weed populations in the field and target weeds for site-specific weed management, including automated precision weed control. This technology will also help growers monitor cover crop performance for weed suppression and detect late-season weed escapes for timely control, thereby reducing seedbank persistence and slowing the evolution of herbicide resistance. In addition to its many applications in weed management, 3D imaging offers weed researchers new tools for understanding spatial and temporal heterogeneity in weed responses to integrated weed management tactics, including weed–crop competition and weed community dynamics. This technology will provide simple and low-cost tools for growers and researchers alike to better understand weed responses in diverse agronomic contexts, which will aid in reducing herbicide use, mitigating herbicide-resistance evolution, and improving environmental health.</abstract><cop>New York, USA</cop><pub>The Weed Science Society of America</pub><doi>10.1017/wsc.2022.56</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8549-7145</orcidid><orcidid>https://orcid.org/0000-0001-6222-3005</orcidid><orcidid>https://orcid.org/0000-0001-5002-106X</orcidid><orcidid>https://orcid.org/0000-0002-3207-0420</orcidid><orcidid>https://orcid.org/0000-0002-1924-3331</orcidid><orcidid>https://orcid.org/0000-0002-1107-7148</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1745
ispartof Weed science, 2022-11, Vol.70 (6), p.641-647
issn 0043-1745
1550-2759
language eng
recordid cdi_proquest_journals_2754803871
source Cambridge University Press Journals Complete
subjects Accuracy
Agricultural practices
Automation
Biomass
Cover crops
Disease management
Environmental health
Evolution
Herbicide resistance
Herbicides
Heterogeneity
Imaging
Integrated weed management
Photogrammetry
point cloud
Populations
Production increases
Real time
Remote sensing
REVIEW
Seed banks
Seeds
stereo vision
structure-from-motion
Tactics
Three dimensional imaging
Three dimensional models
Unmanned aerial vehicles
Weed control
Weeds
title New Directions in Weed Management and Research Using 3D Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Directions%20in%20Weed%20Management%20and%20Research%20Using%203D%20Imaging&rft.jtitle=Weed%20science&rft.au=Dobbs,%20April%20M.&rft.date=2022-11-01&rft.volume=70&rft.issue=6&rft.spage=641&rft.epage=647&rft.pages=641-647&rft.issn=0043-1745&rft.eissn=1550-2759&rft_id=info:doi/10.1017/wsc.2022.56&rft_dat=%3Cproquest_cross%3E2754803871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754803871&rft_id=info:pmid/&rft_cupid=10_1017_wsc_2022_56&rfr_iscdi=true