Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution

The magnetic and magnetic entropy behaviors of the CaBaCo 4 O 7 with Al-doping CaBaCo 3.96 Al 0.06 O 7 and Ni-doping CaBaCo 3.96 Ni 0.06 O 7 compound are observed. When compared with the Al-doping, Ni-doping shows that a huge decrease of ferrimagnetism is produced. For Al-doping, the magnetic measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022-12, Vol.33 (36), p.26881-26891
Hauptverfasser: Ruan, C. L., Yun, Z. Q., Hu, J. Y., Zhang, X., Wang, S. G., Dai, Z. X., Zheng, G. H., Ma, Y. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26891
container_issue 36
container_start_page 26881
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Ruan, C. L.
Yun, Z. Q.
Hu, J. Y.
Zhang, X.
Wang, S. G.
Dai, Z. X.
Zheng, G. H.
Ma, Y. Q.
description The magnetic and magnetic entropy behaviors of the CaBaCo 4 O 7 with Al-doping CaBaCo 3.96 Al 0.06 O 7 and Ni-doping CaBaCo 3.96 Ni 0.06 O 7 compound are observed. When compared with the Al-doping, Ni-doping shows that a huge decrease of ferrimagnetism is produced. For Al-doping, the magnetic measurements suggest that spin-glass and ferromagnetic transitions are observed at 25 K and 45 K. For Ni-doping, besides the above two transitions, another peak is observed due to the antiferromagnetic (AFM) phase appearance at ~ 80 K. The plot of H/M vs M 2 of the isotherms in the vicinity of the Curie temperature suggests that this phase transition was first-order phase transition for all compounds. With decreasing the temperature, the system enters charge-order state and the negative entropy is observed for CaBaCo 4 O 7 and CaBaCo 3.96 Al 0.04 O 7 compound. However, unlike the nonmagnetic doping, replacement of Co 2+ in the zig-zag ferromagnetic chain by Ni 2+ does not truncate the chain, but it perturbs the magnetic interaction through antiferromagnetic exchange with cobalt following Goodenough–Kanamori rules. This possibly reorients the cobalt spins adjacent to the dopant in the chain which modifies ferrimagnetic ground state resulting in competing magnetic states. These are likely responsible for the change in magnetic ground state of CaBaCo 4 O 7 , this results in suppression of ferrimagnetic state with the evolution of antiferromagnetism and magnetic frustration. The result suggests that the AFM interaction between the dopant Ni 2+ and Co 2+ ions has a crucial role in the destabilization of the ferromagnetic structure, whereas the triangular geometry of the cobalt sublattice imposes the appearance of magnetic frustration.
doi_str_mv 10.1007/s10854-022-09353-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754652268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754652268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d398b41591328f82c900d0d34c49b84e49297615134aa67919199163004910063</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxBzhZ4mxYP2MfS3hKhV5A4mY5TlpStXGwk0P_PYYgcUN72D3MzGo-hC4oXFGA4jpR0FIQYIyA4ZITc4BmVBacCM3eD9EMjCyIkIwdo5OUNgCgBNczdPvs1l0ztB433RBDv8f-w3XrBpfuxpVBLAvsw64PY1fjao_nW-zy9dLiNFZpaIdxaEN3ho5Wbpua8999it7u717LR7JYPjyV8wXxnJqB1NzoSlBpKGd6pZk3ADXUXHhhKi0aYZgpFJWUC-dUYWgeQxUHECa3VPwUXU65fQyfY5MGuwlj7PJLywopVK6ndFaxSeVjSCk2K9vHdufi3lKw37TsRMtmWvaHljXZxCdTyuLcP_5F_-P6AlcVaUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754652268</pqid></control><display><type>article</type><title>Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution</title><source>SpringerNature Journals</source><creator>Ruan, C. L. ; Yun, Z. Q. ; Hu, J. Y. ; Zhang, X. ; Wang, S. G. ; Dai, Z. X. ; Zheng, G. H. ; Ma, Y. Q.</creator><creatorcontrib>Ruan, C. L. ; Yun, Z. Q. ; Hu, J. Y. ; Zhang, X. ; Wang, S. G. ; Dai, Z. X. ; Zheng, G. H. ; Ma, Y. Q.</creatorcontrib><description>The magnetic and magnetic entropy behaviors of the CaBaCo 4 O 7 with Al-doping CaBaCo 3.96 Al 0.06 O 7 and Ni-doping CaBaCo 3.96 Ni 0.06 O 7 compound are observed. When compared with the Al-doping, Ni-doping shows that a huge decrease of ferrimagnetism is produced. For Al-doping, the magnetic measurements suggest that spin-glass and ferromagnetic transitions are observed at 25 K and 45 K. For Ni-doping, besides the above two transitions, another peak is observed due to the antiferromagnetic (AFM) phase appearance at ~ 80 K. The plot of H/M vs M 2 of the isotherms in the vicinity of the Curie temperature suggests that this phase transition was first-order phase transition for all compounds. With decreasing the temperature, the system enters charge-order state and the negative entropy is observed for CaBaCo 4 O 7 and CaBaCo 3.96 Al 0.04 O 7 compound. However, unlike the nonmagnetic doping, replacement of Co 2+ in the zig-zag ferromagnetic chain by Ni 2+ does not truncate the chain, but it perturbs the magnetic interaction through antiferromagnetic exchange with cobalt following Goodenough–Kanamori rules. This possibly reorients the cobalt spins adjacent to the dopant in the chain which modifies ferrimagnetic ground state resulting in competing magnetic states. These are likely responsible for the change in magnetic ground state of CaBaCo 4 O 7 , this results in suppression of ferrimagnetic state with the evolution of antiferromagnetism and magnetic frustration. The result suggests that the AFM interaction between the dopant Ni 2+ and Co 2+ ions has a crucial role in the destabilization of the ferromagnetic structure, whereas the triangular geometry of the cobalt sublattice imposes the appearance of magnetic frustration.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-09353-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aluminum ; Antiferromagnetism ; Chains ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Cobalt ; Curie temperature ; Destabilization ; Dopants ; Doping ; Entropy ; Ferrimagnetism ; Ferromagnetism ; Frustrated magnetism ; Ground state ; Magnetic measurement ; Materials Science ; Nickel compounds ; Optical and Electronic Materials ; Phase transitions ; Spin glasses</subject><ispartof>Journal of materials science. Materials in electronics, 2022-12, Vol.33 (36), p.26881-26891</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d398b41591328f82c900d0d34c49b84e49297615134aa67919199163004910063</citedby><cites>FETCH-LOGICAL-c319t-d398b41591328f82c900d0d34c49b84e49297615134aa67919199163004910063</cites><orcidid>0000-0001-9348-1314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-09353-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-09353-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Ruan, C. L.</creatorcontrib><creatorcontrib>Yun, Z. Q.</creatorcontrib><creatorcontrib>Hu, J. Y.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Wang, S. G.</creatorcontrib><creatorcontrib>Dai, Z. X.</creatorcontrib><creatorcontrib>Zheng, G. H.</creatorcontrib><creatorcontrib>Ma, Y. Q.</creatorcontrib><title>Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The magnetic and magnetic entropy behaviors of the CaBaCo 4 O 7 with Al-doping CaBaCo 3.96 Al 0.06 O 7 and Ni-doping CaBaCo 3.96 Ni 0.06 O 7 compound are observed. When compared with the Al-doping, Ni-doping shows that a huge decrease of ferrimagnetism is produced. For Al-doping, the magnetic measurements suggest that spin-glass and ferromagnetic transitions are observed at 25 K and 45 K. For Ni-doping, besides the above two transitions, another peak is observed due to the antiferromagnetic (AFM) phase appearance at ~ 80 K. The plot of H/M vs M 2 of the isotherms in the vicinity of the Curie temperature suggests that this phase transition was first-order phase transition for all compounds. With decreasing the temperature, the system enters charge-order state and the negative entropy is observed for CaBaCo 4 O 7 and CaBaCo 3.96 Al 0.04 O 7 compound. However, unlike the nonmagnetic doping, replacement of Co 2+ in the zig-zag ferromagnetic chain by Ni 2+ does not truncate the chain, but it perturbs the magnetic interaction through antiferromagnetic exchange with cobalt following Goodenough–Kanamori rules. This possibly reorients the cobalt spins adjacent to the dopant in the chain which modifies ferrimagnetic ground state resulting in competing magnetic states. These are likely responsible for the change in magnetic ground state of CaBaCo 4 O 7 , this results in suppression of ferrimagnetic state with the evolution of antiferromagnetism and magnetic frustration. The result suggests that the AFM interaction between the dopant Ni 2+ and Co 2+ ions has a crucial role in the destabilization of the ferromagnetic structure, whereas the triangular geometry of the cobalt sublattice imposes the appearance of magnetic frustration.</description><subject>Aluminum</subject><subject>Antiferromagnetism</subject><subject>Chains</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt</subject><subject>Curie temperature</subject><subject>Destabilization</subject><subject>Dopants</subject><subject>Doping</subject><subject>Entropy</subject><subject>Ferrimagnetism</subject><subject>Ferromagnetism</subject><subject>Frustrated magnetism</subject><subject>Ground state</subject><subject>Magnetic measurement</subject><subject>Materials Science</subject><subject>Nickel compounds</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Spin glasses</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhC0EEuXxBzhZ4mxYP2MfS3hKhV5A4mY5TlpStXGwk0P_PYYgcUN72D3MzGo-hC4oXFGA4jpR0FIQYIyA4ZITc4BmVBacCM3eD9EMjCyIkIwdo5OUNgCgBNczdPvs1l0ztB433RBDv8f-w3XrBpfuxpVBLAvsw64PY1fjao_nW-zy9dLiNFZpaIdxaEN3ho5Wbpua8999it7u717LR7JYPjyV8wXxnJqB1NzoSlBpKGd6pZk3ADXUXHhhKi0aYZgpFJWUC-dUYWgeQxUHECa3VPwUXU65fQyfY5MGuwlj7PJLywopVK6ndFaxSeVjSCk2K9vHdufi3lKw37TsRMtmWvaHljXZxCdTyuLcP_5F_-P6AlcVaUU</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Ruan, C. L.</creator><creator>Yun, Z. Q.</creator><creator>Hu, J. Y.</creator><creator>Zhang, X.</creator><creator>Wang, S. G.</creator><creator>Dai, Z. X.</creator><creator>Zheng, G. H.</creator><creator>Ma, Y. Q.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9348-1314</orcidid></search><sort><creationdate>20221201</creationdate><title>Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution</title><author>Ruan, C. L. ; Yun, Z. Q. ; Hu, J. Y. ; Zhang, X. ; Wang, S. G. ; Dai, Z. X. ; Zheng, G. H. ; Ma, Y. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d398b41591328f82c900d0d34c49b84e49297615134aa67919199163004910063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Antiferromagnetism</topic><topic>Chains</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt</topic><topic>Curie temperature</topic><topic>Destabilization</topic><topic>Dopants</topic><topic>Doping</topic><topic>Entropy</topic><topic>Ferrimagnetism</topic><topic>Ferromagnetism</topic><topic>Frustrated magnetism</topic><topic>Ground state</topic><topic>Magnetic measurement</topic><topic>Materials Science</topic><topic>Nickel compounds</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Spin glasses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, C. L.</creatorcontrib><creatorcontrib>Yun, Z. Q.</creatorcontrib><creatorcontrib>Hu, J. Y.</creatorcontrib><creatorcontrib>Zhang, X.</creatorcontrib><creatorcontrib>Wang, S. G.</creatorcontrib><creatorcontrib>Dai, Z. X.</creatorcontrib><creatorcontrib>Zheng, G. H.</creatorcontrib><creatorcontrib>Ma, Y. Q.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, C. L.</au><au>Yun, Z. Q.</au><au>Hu, J. Y.</au><au>Zhang, X.</au><au>Wang, S. G.</au><au>Dai, Z. X.</au><au>Zheng, G. H.</au><au>Ma, Y. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>33</volume><issue>36</issue><spage>26881</spage><epage>26891</epage><pages>26881-26891</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The magnetic and magnetic entropy behaviors of the CaBaCo 4 O 7 with Al-doping CaBaCo 3.96 Al 0.06 O 7 and Ni-doping CaBaCo 3.96 Ni 0.06 O 7 compound are observed. When compared with the Al-doping, Ni-doping shows that a huge decrease of ferrimagnetism is produced. For Al-doping, the magnetic measurements suggest that spin-glass and ferromagnetic transitions are observed at 25 K and 45 K. For Ni-doping, besides the above two transitions, another peak is observed due to the antiferromagnetic (AFM) phase appearance at ~ 80 K. The plot of H/M vs M 2 of the isotherms in the vicinity of the Curie temperature suggests that this phase transition was first-order phase transition for all compounds. With decreasing the temperature, the system enters charge-order state and the negative entropy is observed for CaBaCo 4 O 7 and CaBaCo 3.96 Al 0.04 O 7 compound. However, unlike the nonmagnetic doping, replacement of Co 2+ in the zig-zag ferromagnetic chain by Ni 2+ does not truncate the chain, but it perturbs the magnetic interaction through antiferromagnetic exchange with cobalt following Goodenough–Kanamori rules. This possibly reorients the cobalt spins adjacent to the dopant in the chain which modifies ferrimagnetic ground state resulting in competing magnetic states. These are likely responsible for the change in magnetic ground state of CaBaCo 4 O 7 , this results in suppression of ferrimagnetic state with the evolution of antiferromagnetism and magnetic frustration. The result suggests that the AFM interaction between the dopant Ni 2+ and Co 2+ ions has a crucial role in the destabilization of the ferromagnetic structure, whereas the triangular geometry of the cobalt sublattice imposes the appearance of magnetic frustration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-09353-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9348-1314</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-12, Vol.33 (36), p.26881-26891
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2754652268
source SpringerNature Journals
subjects Aluminum
Antiferromagnetism
Chains
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Curie temperature
Destabilization
Dopants
Doping
Entropy
Ferrimagnetism
Ferromagnetism
Frustrated magnetism
Ground state
Magnetic measurement
Materials Science
Nickel compounds
Optical and Electronic Materials
Phase transitions
Spin glasses
title Magnetic entropy change CaBaCo4O7 compound by Al and Ni substitution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20entropy%20change%20CaBaCo4O7%20compound%20by%20Al%20and%20Ni%20substitution&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ruan,%20C.%20L.&rft.date=2022-12-01&rft.volume=33&rft.issue=36&rft.spage=26881&rft.epage=26891&rft.pages=26881-26891&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-09353-9&rft_dat=%3Cproquest_cross%3E2754652268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754652268&rft_id=info:pmid/&rfr_iscdi=true