A 1-Msps 500-Node FORCE Learning Accelerator for Reservoir Computing

A major issue in the conventional First-Order Reduced and Controlled Error (FORCE) learning architecture is the low processing speed due to extensive matrix-vector calculations for learning. In this study, we present the field programmable gate array architecture of FORCE learning that achieves the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Signal Processing 2022/07/01, Vol.26(4), pp.103-106
Hauptverfasser: Yoshida, Kose, Akai-Kasaya, Megumi, Asai, Tetsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A major issue in the conventional First-Order Reduced and Controlled Error (FORCE) learning architecture is the low processing speed due to extensive matrix-vector calculations for learning. In this study, we present the field programmable gate array architecture of FORCE learning that achieves the processing of 1-Msps 500-Node data. As a result, the learning was accomplished approximately 3,400 times faster while maintaining the original accuracy in a simulation under specified conditions.
ISSN:1342-6230
1880-1013
DOI:10.2299/jsp.26.103