Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study
In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guida...
Gespeichert in:
Veröffentlicht in: | Dental materials 2022-11, Vol.38 (11), p.1801-1811 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1811 |
---|---|
container_issue | 11 |
container_start_page | 1801 |
container_title | Dental materials |
container_volume | 38 |
creator | Niu, Hao Yang, Dan-Lei Fu, Ji-Wen Gao, Tianyu Wang, Jie-Xin |
description | In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs.
This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers.
The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs.
This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials. |
doi_str_mv | 10.1016/j.dental.2022.09.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754549857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564122002792</els_id><sourcerecordid>2754549857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</originalsourceid><addsrcrecordid>eNp9kcGK1jAUhYMozj-jbyAScN160zRt4kKQQR1hxIW6DvmTWyY_bVKTdHAewnc2Y0eXrkLgu-fccw8hLxi0DNjw-tQ6DMXMbQdd14JqgYlH5MDkqBoANT4mB2CgGjH07Iyc53wCgL5T7Ck54wOTPefyQH59Rntjgrdmpke8Mbc-JmqCowl9mGKyuFQXuuxUXmicaDAhriYVb2ekdt5ywUQnP8-YMvWB7ntVhVw_Ni5rzL5gfkO_-mWbTfEx_LHAnysmv-x0Lpu7e0aeTGbO-PzhvSDfP7z_dnnVXH_5-Ony3XVjuYLS2EHw6YjjMMiaTjqp-GQdZwhHMciul7YfEJSRyg3CWaGYArDdKLmQvJs4vyCvdt01xR8b5qJPcUuhWupuFL3olRRjpfqdsinmnHDSa13XpDvNQN93oE96z6rvO9CgdO2gjr18EN-OC7p_Q3-PXoG3O4A14q3HpLP1GCw6n9AW7aL_v8NvS-ecWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754549857</pqid></control><display><type>article</type><title>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Niu, Hao ; Yang, Dan-Lei ; Fu, Ji-Wen ; Gao, Tianyu ; Wang, Jie-Xin</creator><creatorcontrib>Niu, Hao ; Yang, Dan-Lei ; Fu, Ji-Wen ; Gao, Tianyu ; Wang, Jie-Xin</creatorcontrib><description>In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs.
This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers.
The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs.
This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2022.09.015</identifier><identifier>PMID: 36184338</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Composite materials ; Composite Resins - chemistry ; Compressive strength ; DEM simulation ; Dental materials ; Dental resin composites ; Dental restorative materials ; Discrete element method ; Fillers ; Materials Testing ; Mechanical Properties ; Microparticles ; Nanoparticle clusters fillers ; Nanoparticles ; Reinforcement ; Reinforcement Mechanism ; Resins ; Silicon Dioxide - chemistry ; Simulation ; Surface Properties</subject><ispartof>Dental materials, 2022-11, Vol.38 (11), p.1801-1811</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Nov 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</citedby><cites>FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dental.2022.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36184338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Hao</creatorcontrib><creatorcontrib>Yang, Dan-Lei</creatorcontrib><creatorcontrib>Fu, Ji-Wen</creatorcontrib><creatorcontrib>Gao, Tianyu</creatorcontrib><creatorcontrib>Wang, Jie-Xin</creatorcontrib><title>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs.
This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers.
The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs.
This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.</description><subject>Composite materials</subject><subject>Composite Resins - chemistry</subject><subject>Compressive strength</subject><subject>DEM simulation</subject><subject>Dental materials</subject><subject>Dental resin composites</subject><subject>Dental restorative materials</subject><subject>Discrete element method</subject><subject>Fillers</subject><subject>Materials Testing</subject><subject>Mechanical Properties</subject><subject>Microparticles</subject><subject>Nanoparticle clusters fillers</subject><subject>Nanoparticles</subject><subject>Reinforcement</subject><subject>Reinforcement Mechanism</subject><subject>Resins</subject><subject>Silicon Dioxide - chemistry</subject><subject>Simulation</subject><subject>Surface Properties</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGK1jAUhYMozj-jbyAScN160zRt4kKQQR1hxIW6DvmTWyY_bVKTdHAewnc2Y0eXrkLgu-fccw8hLxi0DNjw-tQ6DMXMbQdd14JqgYlH5MDkqBoANT4mB2CgGjH07Iyc53wCgL5T7Ck54wOTPefyQH59Rntjgrdmpke8Mbc-JmqCowl9mGKyuFQXuuxUXmicaDAhriYVb2ekdt5ywUQnP8-YMvWB7ntVhVw_Ni5rzL5gfkO_-mWbTfEx_LHAnysmv-x0Lpu7e0aeTGbO-PzhvSDfP7z_dnnVXH_5-Ony3XVjuYLS2EHw6YjjMMiaTjqp-GQdZwhHMciul7YfEJSRyg3CWaGYArDdKLmQvJs4vyCvdt01xR8b5qJPcUuhWupuFL3olRRjpfqdsinmnHDSa13XpDvNQN93oE96z6rvO9CgdO2gjr18EN-OC7p_Q3-PXoG3O4A14q3HpLP1GCw6n9AW7aL_v8NvS-ecWw</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Niu, Hao</creator><creator>Yang, Dan-Lei</creator><creator>Fu, Ji-Wen</creator><creator>Gao, Tianyu</creator><creator>Wang, Jie-Xin</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>202211</creationdate><title>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</title><author>Niu, Hao ; Yang, Dan-Lei ; Fu, Ji-Wen ; Gao, Tianyu ; Wang, Jie-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composite materials</topic><topic>Composite Resins - chemistry</topic><topic>Compressive strength</topic><topic>DEM simulation</topic><topic>Dental materials</topic><topic>Dental resin composites</topic><topic>Dental restorative materials</topic><topic>Discrete element method</topic><topic>Fillers</topic><topic>Materials Testing</topic><topic>Mechanical Properties</topic><topic>Microparticles</topic><topic>Nanoparticle clusters fillers</topic><topic>Nanoparticles</topic><topic>Reinforcement</topic><topic>Reinforcement Mechanism</topic><topic>Resins</topic><topic>Silicon Dioxide - chemistry</topic><topic>Simulation</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Hao</creatorcontrib><creatorcontrib>Yang, Dan-Lei</creatorcontrib><creatorcontrib>Fu, Ji-Wen</creatorcontrib><creatorcontrib>Gao, Tianyu</creatorcontrib><creatorcontrib>Wang, Jie-Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Hao</au><au>Yang, Dan-Lei</au><au>Fu, Ji-Wen</au><au>Gao, Tianyu</au><au>Wang, Jie-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2022-11</date><risdate>2022</risdate><volume>38</volume><issue>11</issue><spage>1801</spage><epage>1811</epage><pages>1801-1811</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs.
This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers.
The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs.
This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>36184338</pmid><doi>10.1016/j.dental.2022.09.015</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0109-5641 |
ispartof | Dental materials, 2022-11, Vol.38 (11), p.1801-1811 |
issn | 0109-5641 1879-0097 |
language | eng |
recordid | cdi_proquest_journals_2754549857 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Composite materials Composite Resins - chemistry Compressive strength DEM simulation Dental materials Dental resin composites Dental restorative materials Discrete element method Fillers Materials Testing Mechanical Properties Microparticles Nanoparticle clusters fillers Nanoparticles Reinforcement Reinforcement Mechanism Resins Silicon Dioxide - chemistry Simulation Surface Properties |
title | Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behavior%20and%20reinforcement%20mechanism%20of%20nanoparticle%20cluster%20fillers%20in%20dental%20resin%20composites:%20Simulation%20and%20experimental%20study&rft.jtitle=Dental%20materials&rft.au=Niu,%20Hao&rft.date=2022-11&rft.volume=38&rft.issue=11&rft.spage=1801&rft.epage=1811&rft.pages=1801-1811&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2022.09.015&rft_dat=%3Cproquest_cross%3E2754549857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754549857&rft_id=info:pmid/36184338&rft_els_id=S0109564122002792&rfr_iscdi=true |