Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study

In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2022-11, Vol.38 (11), p.1801-1811
Hauptverfasser: Niu, Hao, Yang, Dan-Lei, Fu, Ji-Wen, Gao, Tianyu, Wang, Jie-Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1811
container_issue 11
container_start_page 1801
container_title Dental materials
container_volume 38
creator Niu, Hao
Yang, Dan-Lei
Fu, Ji-Wen
Gao, Tianyu
Wang, Jie-Xin
description In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs. This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers. The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs. This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.
doi_str_mv 10.1016/j.dental.2022.09.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754549857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564122002792</els_id><sourcerecordid>2754549857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</originalsourceid><addsrcrecordid>eNp9kcGK1jAUhYMozj-jbyAScN160zRt4kKQQR1hxIW6DvmTWyY_bVKTdHAewnc2Y0eXrkLgu-fccw8hLxi0DNjw-tQ6DMXMbQdd14JqgYlH5MDkqBoANT4mB2CgGjH07Iyc53wCgL5T7Ck54wOTPefyQH59Rntjgrdmpke8Mbc-JmqCowl9mGKyuFQXuuxUXmicaDAhriYVb2ekdt5ywUQnP8-YMvWB7ntVhVw_Ni5rzL5gfkO_-mWbTfEx_LHAnysmv-x0Lpu7e0aeTGbO-PzhvSDfP7z_dnnVXH_5-Ony3XVjuYLS2EHw6YjjMMiaTjqp-GQdZwhHMciul7YfEJSRyg3CWaGYArDdKLmQvJs4vyCvdt01xR8b5qJPcUuhWupuFL3olRRjpfqdsinmnHDSa13XpDvNQN93oE96z6rvO9CgdO2gjr18EN-OC7p_Q3-PXoG3O4A14q3HpLP1GCw6n9AW7aL_v8NvS-ecWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754549857</pqid></control><display><type>article</type><title>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Niu, Hao ; Yang, Dan-Lei ; Fu, Ji-Wen ; Gao, Tianyu ; Wang, Jie-Xin</creator><creatorcontrib>Niu, Hao ; Yang, Dan-Lei ; Fu, Ji-Wen ; Gao, Tianyu ; Wang, Jie-Xin</creatorcontrib><description>In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs. This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers. The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs. This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2022.09.015</identifier><identifier>PMID: 36184338</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Composite materials ; Composite Resins - chemistry ; Compressive strength ; DEM simulation ; Dental materials ; Dental resin composites ; Dental restorative materials ; Discrete element method ; Fillers ; Materials Testing ; Mechanical Properties ; Microparticles ; Nanoparticle clusters fillers ; Nanoparticles ; Reinforcement ; Reinforcement Mechanism ; Resins ; Silicon Dioxide - chemistry ; Simulation ; Surface Properties</subject><ispartof>Dental materials, 2022-11, Vol.38 (11), p.1801-1811</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Nov 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</citedby><cites>FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dental.2022.09.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36184338$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Hao</creatorcontrib><creatorcontrib>Yang, Dan-Lei</creatorcontrib><creatorcontrib>Fu, Ji-Wen</creatorcontrib><creatorcontrib>Gao, Tianyu</creatorcontrib><creatorcontrib>Wang, Jie-Xin</creatorcontrib><title>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs. This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers. The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs. This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.</description><subject>Composite materials</subject><subject>Composite Resins - chemistry</subject><subject>Compressive strength</subject><subject>DEM simulation</subject><subject>Dental materials</subject><subject>Dental resin composites</subject><subject>Dental restorative materials</subject><subject>Discrete element method</subject><subject>Fillers</subject><subject>Materials Testing</subject><subject>Mechanical Properties</subject><subject>Microparticles</subject><subject>Nanoparticle clusters fillers</subject><subject>Nanoparticles</subject><subject>Reinforcement</subject><subject>Reinforcement Mechanism</subject><subject>Resins</subject><subject>Silicon Dioxide - chemistry</subject><subject>Simulation</subject><subject>Surface Properties</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGK1jAUhYMozj-jbyAScN160zRt4kKQQR1hxIW6DvmTWyY_bVKTdHAewnc2Y0eXrkLgu-fccw8hLxi0DNjw-tQ6DMXMbQdd14JqgYlH5MDkqBoANT4mB2CgGjH07Iyc53wCgL5T7Ck54wOTPefyQH59Rntjgrdmpke8Mbc-JmqCowl9mGKyuFQXuuxUXmicaDAhriYVb2ekdt5ywUQnP8-YMvWB7ntVhVw_Ni5rzL5gfkO_-mWbTfEx_LHAnysmv-x0Lpu7e0aeTGbO-PzhvSDfP7z_dnnVXH_5-Ony3XVjuYLS2EHw6YjjMMiaTjqp-GQdZwhHMciul7YfEJSRyg3CWaGYArDdKLmQvJs4vyCvdt01xR8b5qJPcUuhWupuFL3olRRjpfqdsinmnHDSa13XpDvNQN93oE96z6rvO9CgdO2gjr18EN-OC7p_Q3-PXoG3O4A14q3HpLP1GCw6n9AW7aL_v8NvS-ecWw</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Niu, Hao</creator><creator>Yang, Dan-Lei</creator><creator>Fu, Ji-Wen</creator><creator>Gao, Tianyu</creator><creator>Wang, Jie-Xin</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>202211</creationdate><title>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</title><author>Niu, Hao ; Yang, Dan-Lei ; Fu, Ji-Wen ; Gao, Tianyu ; Wang, Jie-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-c653fbe76685648d893fcd31e0b568248c46e09a89d65dc591900c27835832f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Composite materials</topic><topic>Composite Resins - chemistry</topic><topic>Compressive strength</topic><topic>DEM simulation</topic><topic>Dental materials</topic><topic>Dental resin composites</topic><topic>Dental restorative materials</topic><topic>Discrete element method</topic><topic>Fillers</topic><topic>Materials Testing</topic><topic>Mechanical Properties</topic><topic>Microparticles</topic><topic>Nanoparticle clusters fillers</topic><topic>Nanoparticles</topic><topic>Reinforcement</topic><topic>Reinforcement Mechanism</topic><topic>Resins</topic><topic>Silicon Dioxide - chemistry</topic><topic>Simulation</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Hao</creatorcontrib><creatorcontrib>Yang, Dan-Lei</creatorcontrib><creatorcontrib>Fu, Ji-Wen</creatorcontrib><creatorcontrib>Gao, Tianyu</creatorcontrib><creatorcontrib>Wang, Jie-Xin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Hao</au><au>Yang, Dan-Lei</au><au>Fu, Ji-Wen</au><au>Gao, Tianyu</au><au>Wang, Jie-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2022-11</date><risdate>2022</risdate><volume>38</volume><issue>11</issue><spage>1801</spage><epage>1811</epage><pages>1801-1811</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>In dental resin composites (DRCs), the structure of fillers has a great impact on the mechanical behavior. The purpose of this study is to gain an in-depth understanding of the reinforcement mechanism and mechanical behavior of DRCs with nanoparticle clusters (NCs) fillers, thereby providing a guidance for the optimal design of filler structures for DRCs. This work pioneers the use of discrete element method (DEM) simulations combined with experiments to study the mechanical behavior and reinforcement mechanism of DRCs with NCs fillers. The uniaxial compressive strength (UCS) of NCs-reinforced DRCs have an improvement of 9.58 % and 15.02 % in comparison with nanoparticles (NPs) and microparticles (MPs), respectively, because of the ability of NCs to deflect cracks and absorb stress through gradual fracturing. By using NCs and NPs as co-fillers, the internal defects of DRCs can be reduced, resulting in a further improvement of UCS of DRCs by 6.21 %. Furthermore, the mechanical properties of DRCs can be effectively improved by increasing the strength of NCs or reducing the size of NCs. This study deepens the understanding of relationship between filler structure and mechanical behavior in DRCs at the mesoscale and provides an avenue for the application of DEM simulations in composite materials.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>36184338</pmid><doi>10.1016/j.dental.2022.09.015</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2022-11, Vol.38 (11), p.1801-1811
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_journals_2754549857
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Composite materials
Composite Resins - chemistry
Compressive strength
DEM simulation
Dental materials
Dental resin composites
Dental restorative materials
Discrete element method
Fillers
Materials Testing
Mechanical Properties
Microparticles
Nanoparticle clusters fillers
Nanoparticles
Reinforcement
Reinforcement Mechanism
Resins
Silicon Dioxide - chemistry
Simulation
Surface Properties
title Mechanical behavior and reinforcement mechanism of nanoparticle cluster fillers in dental resin composites: Simulation and experimental study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20behavior%20and%20reinforcement%20mechanism%20of%20nanoparticle%20cluster%20fillers%20in%20dental%20resin%20composites:%20Simulation%20and%20experimental%20study&rft.jtitle=Dental%20materials&rft.au=Niu,%20Hao&rft.date=2022-11&rft.volume=38&rft.issue=11&rft.spage=1801&rft.epage=1811&rft.pages=1801-1811&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2022.09.015&rft_dat=%3Cproquest_cross%3E2754549857%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754549857&rft_id=info:pmid/36184338&rft_els_id=S0109564122002792&rfr_iscdi=true