An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis

•Cokriging-based sensitivity analysis is proposed.•High dimensional representation of Cokriging is derived.•Analytical expression of Sobol index is derived based on Cokriging method.•The proposed estimator can reduce the computational costs. Global sensitivity analysis (GSA), particularly for Sobol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2023-01, Vol.229, p.108858, Article 108858
Hauptverfasser: Shang, Xiaobing, Su, Li, Fang, Hai, Zeng, Bowen, Zhang, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108858
container_title Reliability engineering & system safety
container_volume 229
creator Shang, Xiaobing
Su, Li
Fang, Hai
Zeng, Bowen
Zhang, Zhi
description •Cokriging-based sensitivity analysis is proposed.•High dimensional representation of Cokriging is derived.•Analytical expression of Sobol index is derived based on Cokriging method.•The proposed estimator can reduce the computational costs. Global sensitivity analysis (GSA), particularly for Sobol index, is a powerful tool to quantify the variation of model response sourced from the uncertainty of input variables over the entire design space. However, GSA requires a large number of model evaluations to achieve satisfactory accuracy, which will lead to a great challenge in computational efforts when the model is expensive to be evaluated. To address this issue, an efficient method based on multi-fidelity Kriging (Cokriging) surrogate model is proposed. To this end, high dimensional model representation of Cokriging predictor is preformed to derive the analytical expressions of total and partial variances. Then, the sensitivity analysis is transformed into the computation of several one-dimensional integrals, which is beneficial to reduce the computational burden. Four examples are employed to validate the performance of the proposed method. The results demonstrate that Cokriging estimator is an efficient approach to yield promising accuracy and reduce computational costs in the sensitivity analysis.
doi_str_mv 10.1016/j.ress.2022.108858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754549588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832022004756</els_id><sourcerecordid>2754549588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a6f5d85d4328ea95cfe7e11aa0da2527918e3d2f3c9713a8529e266ffe294ee13</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz12TtGlT8LIs_sMFL3qO2WZSU9pmTbIL--1NqWdPw8y8N7z5IXRLyYoSWt53Kw8hrBhhLA2E4OIMLaio6oyIvDxHC1JzmomckUt0FUJHCClqXi3Q13rEYIxtLIwRD4c-2sxYDb2NJ_zmbWvHFoeD965VEfDg0irbqQAaDxC_ncbGedz2bqd6HGAMNtrj5FWj6k_Bhmt0YVQf4OavLtHn0-PH5iXbvj-_btbbrMmZiJkqDdeC6yJ1oGreGKiAUqWIVoyzqqYCcs1M3tQVzZXgrAZWlsYAqwsAmi_R3Xx3793PAUKUnTv4FCJIVvGCp3eFSCo2qxrvQvBg5N7bQfmTpEROJGUnJ5JyIilnksn0MJsg5T9a8DJMuBrQ1kMTpXb2P_svAWt-Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754549588</pqid></control><display><type>article</type><title>An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shang, Xiaobing ; Su, Li ; Fang, Hai ; Zeng, Bowen ; Zhang, Zhi</creator><creatorcontrib>Shang, Xiaobing ; Su, Li ; Fang, Hai ; Zeng, Bowen ; Zhang, Zhi</creatorcontrib><description>•Cokriging-based sensitivity analysis is proposed.•High dimensional representation of Cokriging is derived.•Analytical expression of Sobol index is derived based on Cokriging method.•The proposed estimator can reduce the computational costs. Global sensitivity analysis (GSA), particularly for Sobol index, is a powerful tool to quantify the variation of model response sourced from the uncertainty of input variables over the entire design space. However, GSA requires a large number of model evaluations to achieve satisfactory accuracy, which will lead to a great challenge in computational efforts when the model is expensive to be evaluated. To address this issue, an efficient method based on multi-fidelity Kriging (Cokriging) surrogate model is proposed. To this end, high dimensional model representation of Cokriging predictor is preformed to derive the analytical expressions of total and partial variances. Then, the sensitivity analysis is transformed into the computation of several one-dimensional integrals, which is beneficial to reduce the computational burden. Four examples are employed to validate the performance of the proposed method. The results demonstrate that Cokriging estimator is an efficient approach to yield promising accuracy and reduce computational costs in the sensitivity analysis.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2022.108858</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Accuracy ; Cokriging ; Computer applications ; Computing costs ; Cost analysis ; Global sensitivity analysis ; Multi-fidelity surrogate model ; Reliability engineering ; Sensitivity analysis ; Sobol index</subject><ispartof>Reliability engineering &amp; system safety, 2023-01, Vol.229, p.108858, Article 108858</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Jan 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a6f5d85d4328ea95cfe7e11aa0da2527918e3d2f3c9713a8529e266ffe294ee13</citedby><cites>FETCH-LOGICAL-c328t-a6f5d85d4328ea95cfe7e11aa0da2527918e3d2f3c9713a8529e266ffe294ee13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2022.108858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shang, Xiaobing</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Fang, Hai</creatorcontrib><creatorcontrib>Zeng, Bowen</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><title>An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis</title><title>Reliability engineering &amp; system safety</title><description>•Cokriging-based sensitivity analysis is proposed.•High dimensional representation of Cokriging is derived.•Analytical expression of Sobol index is derived based on Cokriging method.•The proposed estimator can reduce the computational costs. Global sensitivity analysis (GSA), particularly for Sobol index, is a powerful tool to quantify the variation of model response sourced from the uncertainty of input variables over the entire design space. However, GSA requires a large number of model evaluations to achieve satisfactory accuracy, which will lead to a great challenge in computational efforts when the model is expensive to be evaluated. To address this issue, an efficient method based on multi-fidelity Kriging (Cokriging) surrogate model is proposed. To this end, high dimensional model representation of Cokriging predictor is preformed to derive the analytical expressions of total and partial variances. Then, the sensitivity analysis is transformed into the computation of several one-dimensional integrals, which is beneficial to reduce the computational burden. Four examples are employed to validate the performance of the proposed method. The results demonstrate that Cokriging estimator is an efficient approach to yield promising accuracy and reduce computational costs in the sensitivity analysis.</description><subject>Accuracy</subject><subject>Cokriging</subject><subject>Computer applications</subject><subject>Computing costs</subject><subject>Cost analysis</subject><subject>Global sensitivity analysis</subject><subject>Multi-fidelity surrogate model</subject><subject>Reliability engineering</subject><subject>Sensitivity analysis</subject><subject>Sobol index</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz12TtGlT8LIs_sMFL3qO2WZSU9pmTbIL--1NqWdPw8y8N7z5IXRLyYoSWt53Kw8hrBhhLA2E4OIMLaio6oyIvDxHC1JzmomckUt0FUJHCClqXi3Q13rEYIxtLIwRD4c-2sxYDb2NJ_zmbWvHFoeD965VEfDg0irbqQAaDxC_ncbGedz2bqd6HGAMNtrj5FWj6k_Bhmt0YVQf4OavLtHn0-PH5iXbvj-_btbbrMmZiJkqDdeC6yJ1oGreGKiAUqWIVoyzqqYCcs1M3tQVzZXgrAZWlsYAqwsAmi_R3Xx3793PAUKUnTv4FCJIVvGCp3eFSCo2qxrvQvBg5N7bQfmTpEROJGUnJ5JyIilnksn0MJsg5T9a8DJMuBrQ1kMTpXb2P_svAWt-Og</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Shang, Xiaobing</creator><creator>Su, Li</creator><creator>Fang, Hai</creator><creator>Zeng, Bowen</creator><creator>Zhang, Zhi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>SOI</scope></search><sort><creationdate>202301</creationdate><title>An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis</title><author>Shang, Xiaobing ; Su, Li ; Fang, Hai ; Zeng, Bowen ; Zhang, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a6f5d85d4328ea95cfe7e11aa0da2527918e3d2f3c9713a8529e266ffe294ee13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Cokriging</topic><topic>Computer applications</topic><topic>Computing costs</topic><topic>Cost analysis</topic><topic>Global sensitivity analysis</topic><topic>Multi-fidelity surrogate model</topic><topic>Reliability engineering</topic><topic>Sensitivity analysis</topic><topic>Sobol index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xiaobing</creatorcontrib><creatorcontrib>Su, Li</creatorcontrib><creatorcontrib>Fang, Hai</creatorcontrib><creatorcontrib>Zeng, Bowen</creatorcontrib><creatorcontrib>Zhang, Zhi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Xiaobing</au><au>Su, Li</au><au>Fang, Hai</au><au>Zeng, Bowen</au><au>Zhang, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2023-01</date><risdate>2023</risdate><volume>229</volume><spage>108858</spage><pages>108858-</pages><artnum>108858</artnum><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>•Cokriging-based sensitivity analysis is proposed.•High dimensional representation of Cokriging is derived.•Analytical expression of Sobol index is derived based on Cokriging method.•The proposed estimator can reduce the computational costs. Global sensitivity analysis (GSA), particularly for Sobol index, is a powerful tool to quantify the variation of model response sourced from the uncertainty of input variables over the entire design space. However, GSA requires a large number of model evaluations to achieve satisfactory accuracy, which will lead to a great challenge in computational efforts when the model is expensive to be evaluated. To address this issue, an efficient method based on multi-fidelity Kriging (Cokriging) surrogate model is proposed. To this end, high dimensional model representation of Cokriging predictor is preformed to derive the analytical expressions of total and partial variances. Then, the sensitivity analysis is transformed into the computation of several one-dimensional integrals, which is beneficial to reduce the computational burden. Four examples are employed to validate the performance of the proposed method. The results demonstrate that Cokriging estimator is an efficient approach to yield promising accuracy and reduce computational costs in the sensitivity analysis.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2022.108858</doi></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2023-01, Vol.229, p.108858, Article 108858
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_journals_2754549588
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Cokriging
Computer applications
Computing costs
Cost analysis
Global sensitivity analysis
Multi-fidelity surrogate model
Reliability engineering
Sensitivity analysis
Sobol index
title An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20multi-fidelity%20Kriging%20surrogate%20model-based%20method%20for%20global%20sensitivity%20analysis&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Shang,%20Xiaobing&rft.date=2023-01&rft.volume=229&rft.spage=108858&rft.pages=108858-&rft.artnum=108858&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2022.108858&rft_dat=%3Cproquest_cross%3E2754549588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754549588&rft_id=info:pmid/&rft_els_id=S0951832022004756&rfr_iscdi=true