Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis

Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical Prospecting 2023-01, Vol.71 (1), p.102-113
Hauptverfasser: Shan, Junzhen, Wu, Guochen, Yang, Sen, Liu, Hongying, Zhang, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 102
container_title Geophysical Prospecting
container_volume 71
creator Shan, Junzhen
Wu, Guochen
Yang, Sen
Liu, Hongying
Zhang, Bo
description Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.
doi_str_mv 10.1111/1365-2478.13286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754516155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754516155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2696-fa37f11097da4d40b2b553f32085d18470e8bff5dac7669376a228795cf29a343</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5mqJc1r_xHZyRBW0SJWo-DlbbmKrrpI4tZOWcOIReEaehJQgruxlpdXMrOYD4BqjCe5niilnEYlFMsGUJPwEjP4up2CEEOZRggg7BxchbBGiiLF4BMpnW7aFaqyroDPQlrV3e53DuvUarr4-Pg9qr6HetYPEVrDxqgp77YMuOmiDa7yrbQZLnVsFD7bZQAU3ztt3VzWqgKErS934Dqo3Gy7BmVFF0Fe_ewxe7-9eZoto-Th_mN0uo4zwlEdGUWEwRqnIVZzHaE3WjFFDCUpYjpNYIJ2sjWG5ygTnKRVcEZKIlGWGpIrGdAxuhty-za7VoZFb1_qqfymJYDHDHPeBYzAdVJl3IXhtZO1tqXwnMZJHpvJIUB4Jyh-mvYMNjoMtdPefXM5XT4PvGwICeuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754516155</pqid></control><display><type>article</type><title>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</title><source>Access via Wiley Online Library</source><creator>Shan, Junzhen ; Wu, Guochen ; Yang, Sen ; Liu, Hongying ; Zhang, Bo</creator><creatorcontrib>Shan, Junzhen ; Wu, Guochen ; Yang, Sen ; Liu, Hongying ; Zhang, Bo</creatorcontrib><description>Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.13286</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Acoustic waves ; Anisotropic media ; anisotropy ; Approximation ; Elastic anisotropy ; Finite difference method ; Isotropic media ; Kinematics ; modelling ; Operators (mathematics) ; P-waves ; Phase velocity ; S waves ; Seismic data ; Seismic stability ; Seismic waves ; Simulation ; Sound waves ; Symmetry ; Velocity ; Wave equations ; Wave phase ; Wave propagation ; Wave velocity</subject><ispartof>Geophysical Prospecting, 2023-01, Vol.71 (1), p.102-113</ispartof><rights>2022 European Association of Geoscientists &amp; Engineers.</rights><rights>2023 European Association of Geoscientists &amp; Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2696-fa37f11097da4d40b2b553f32085d18470e8bff5dac7669376a228795cf29a343</cites><orcidid>0000-0003-2997-0812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.13286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.13286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shan, Junzhen</creatorcontrib><creatorcontrib>Wu, Guochen</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><title>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</title><title>Geophysical Prospecting</title><description>Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.</description><subject>Acoustic waves</subject><subject>Anisotropic media</subject><subject>anisotropy</subject><subject>Approximation</subject><subject>Elastic anisotropy</subject><subject>Finite difference method</subject><subject>Isotropic media</subject><subject>Kinematics</subject><subject>modelling</subject><subject>Operators (mathematics)</subject><subject>P-waves</subject><subject>Phase velocity</subject><subject>S waves</subject><subject>Seismic data</subject><subject>Seismic stability</subject><subject>Seismic waves</subject><subject>Simulation</subject><subject>Sound waves</subject><subject>Symmetry</subject><subject>Velocity</subject><subject>Wave equations</subject><subject>Wave phase</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5mqJc1r_xHZyRBW0SJWo-DlbbmKrrpI4tZOWcOIReEaehJQgruxlpdXMrOYD4BqjCe5niilnEYlFMsGUJPwEjP4up2CEEOZRggg7BxchbBGiiLF4BMpnW7aFaqyroDPQlrV3e53DuvUarr4-Pg9qr6HetYPEVrDxqgp77YMuOmiDa7yrbQZLnVsFD7bZQAU3ztt3VzWqgKErS934Dqo3Gy7BmVFF0Fe_ewxe7-9eZoto-Th_mN0uo4zwlEdGUWEwRqnIVZzHaE3WjFFDCUpYjpNYIJ2sjWG5ygTnKRVcEZKIlGWGpIrGdAxuhty-za7VoZFb1_qqfymJYDHDHPeBYzAdVJl3IXhtZO1tqXwnMZJHpvJIUB4Jyh-mvYMNjoMtdPefXM5XT4PvGwICeuY</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Shan, Junzhen</creator><creator>Wu, Guochen</creator><creator>Yang, Sen</creator><creator>Liu, Hongying</creator><creator>Zhang, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2997-0812</orcidid></search><sort><creationdate>202301</creationdate><title>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</title><author>Shan, Junzhen ; Wu, Guochen ; Yang, Sen ; Liu, Hongying ; Zhang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2696-fa37f11097da4d40b2b553f32085d18470e8bff5dac7669376a228795cf29a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic waves</topic><topic>Anisotropic media</topic><topic>anisotropy</topic><topic>Approximation</topic><topic>Elastic anisotropy</topic><topic>Finite difference method</topic><topic>Isotropic media</topic><topic>Kinematics</topic><topic>modelling</topic><topic>Operators (mathematics)</topic><topic>P-waves</topic><topic>Phase velocity</topic><topic>S waves</topic><topic>Seismic data</topic><topic>Seismic stability</topic><topic>Seismic waves</topic><topic>Simulation</topic><topic>Sound waves</topic><topic>Symmetry</topic><topic>Velocity</topic><topic>Wave equations</topic><topic>Wave phase</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Junzhen</creatorcontrib><creatorcontrib>Wu, Guochen</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Junzhen</au><au>Wu, Guochen</au><au>Yang, Sen</au><au>Liu, Hongying</au><au>Zhang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</atitle><jtitle>Geophysical Prospecting</jtitle><date>2023-01</date><risdate>2023</risdate><volume>71</volume><issue>1</issue><spage>102</spage><epage>113</epage><pages>102-113</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.13286</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2997-0812</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-8025
ispartof Geophysical Prospecting, 2023-01, Vol.71 (1), p.102-113
issn 0016-8025
1365-2478
language eng
recordid cdi_proquest_journals_2754516155
source Access via Wiley Online Library
subjects Acoustic waves
Anisotropic media
anisotropy
Approximation
Elastic anisotropy
Finite difference method
Isotropic media
Kinematics
modelling
Operators (mathematics)
P-waves
Phase velocity
S waves
Seismic data
Seismic stability
Seismic waves
Simulation
Sound waves
Symmetry
Velocity
Wave equations
Wave phase
Wave propagation
Wave velocity
title Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20improved%20pure%20P%E2%80%90wave%20equation%20in%20transversely%20isotropic%20media%20with%20a%20horizontal%20symmetry%20axis&rft.jtitle=Geophysical%20Prospecting&rft.au=Shan,%20Junzhen&rft.date=2023-01&rft.volume=71&rft.issue=1&rft.spage=102&rft.epage=113&rft.pages=102-113&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.13286&rft_dat=%3Cproquest_cross%3E2754516155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754516155&rft_id=info:pmid/&rfr_iscdi=true