Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximat...
Gespeichert in:
Veröffentlicht in: | Geophysical Prospecting 2023-01, Vol.71 (1), p.102-113 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 1 |
container_start_page | 102 |
container_title | Geophysical Prospecting |
container_volume | 71 |
creator | Shan, Junzhen Wu, Guochen Yang, Sen Liu, Hongying Zhang, Bo |
description | Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation. |
doi_str_mv | 10.1111/1365-2478.13286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754516155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754516155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2696-fa37f11097da4d40b2b553f32085d18470e8bff5dac7669376a228795cf29a343</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqVw5mqJc1r_xHZyRBW0SJWo-DlbbmKrrpI4tZOWcOIReEaehJQgruxlpdXMrOYD4BqjCe5niilnEYlFMsGUJPwEjP4up2CEEOZRggg7BxchbBGiiLF4BMpnW7aFaqyroDPQlrV3e53DuvUarr4-Pg9qr6HetYPEVrDxqgp77YMuOmiDa7yrbQZLnVsFD7bZQAU3ztt3VzWqgKErS934Dqo3Gy7BmVFF0Fe_ewxe7-9eZoto-Th_mN0uo4zwlEdGUWEwRqnIVZzHaE3WjFFDCUpYjpNYIJ2sjWG5ygTnKRVcEZKIlGWGpIrGdAxuhty-za7VoZFb1_qqfymJYDHDHPeBYzAdVJl3IXhtZO1tqXwnMZJHpvJIUB4Jyh-mvYMNjoMtdPefXM5XT4PvGwICeuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754516155</pqid></control><display><type>article</type><title>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</title><source>Access via Wiley Online Library</source><creator>Shan, Junzhen ; Wu, Guochen ; Yang, Sen ; Liu, Hongying ; Zhang, Bo</creator><creatorcontrib>Shan, Junzhen ; Wu, Guochen ; Yang, Sen ; Liu, Hongying ; Zhang, Bo</creatorcontrib><description>Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.13286</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Acoustic waves ; Anisotropic media ; anisotropy ; Approximation ; Elastic anisotropy ; Finite difference method ; Isotropic media ; Kinematics ; modelling ; Operators (mathematics) ; P-waves ; Phase velocity ; S waves ; Seismic data ; Seismic stability ; Seismic waves ; Simulation ; Sound waves ; Symmetry ; Velocity ; Wave equations ; Wave phase ; Wave propagation ; Wave velocity</subject><ispartof>Geophysical Prospecting, 2023-01, Vol.71 (1), p.102-113</ispartof><rights>2022 European Association of Geoscientists & Engineers.</rights><rights>2023 European Association of Geoscientists & Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2696-fa37f11097da4d40b2b553f32085d18470e8bff5dac7669376a228795cf29a343</cites><orcidid>0000-0003-2997-0812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.13286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.13286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shan, Junzhen</creatorcontrib><creatorcontrib>Wu, Guochen</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><title>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</title><title>Geophysical Prospecting</title><description>Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.</description><subject>Acoustic waves</subject><subject>Anisotropic media</subject><subject>anisotropy</subject><subject>Approximation</subject><subject>Elastic anisotropy</subject><subject>Finite difference method</subject><subject>Isotropic media</subject><subject>Kinematics</subject><subject>modelling</subject><subject>Operators (mathematics)</subject><subject>P-waves</subject><subject>Phase velocity</subject><subject>S waves</subject><subject>Seismic data</subject><subject>Seismic stability</subject><subject>Seismic waves</subject><subject>Simulation</subject><subject>Sound waves</subject><subject>Symmetry</subject><subject>Velocity</subject><subject>Wave equations</subject><subject>Wave phase</subject><subject>Wave propagation</subject><subject>Wave velocity</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqVw5mqJc1r_xHZyRBW0SJWo-DlbbmKrrpI4tZOWcOIReEaehJQgruxlpdXMrOYD4BqjCe5niilnEYlFMsGUJPwEjP4up2CEEOZRggg7BxchbBGiiLF4BMpnW7aFaqyroDPQlrV3e53DuvUarr4-Pg9qr6HetYPEVrDxqgp77YMuOmiDa7yrbQZLnVsFD7bZQAU3ztt3VzWqgKErS934Dqo3Gy7BmVFF0Fe_ewxe7-9eZoto-Th_mN0uo4zwlEdGUWEwRqnIVZzHaE3WjFFDCUpYjpNYIJ2sjWG5ygTnKRVcEZKIlGWGpIrGdAxuhty-za7VoZFb1_qqfymJYDHDHPeBYzAdVJl3IXhtZO1tqXwnMZJHpvJIUB4Jyh-mvYMNjoMtdPefXM5XT4PvGwICeuY</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Shan, Junzhen</creator><creator>Wu, Guochen</creator><creator>Yang, Sen</creator><creator>Liu, Hongying</creator><creator>Zhang, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2997-0812</orcidid></search><sort><creationdate>202301</creationdate><title>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</title><author>Shan, Junzhen ; Wu, Guochen ; Yang, Sen ; Liu, Hongying ; Zhang, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2696-fa37f11097da4d40b2b553f32085d18470e8bff5dac7669376a228795cf29a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic waves</topic><topic>Anisotropic media</topic><topic>anisotropy</topic><topic>Approximation</topic><topic>Elastic anisotropy</topic><topic>Finite difference method</topic><topic>Isotropic media</topic><topic>Kinematics</topic><topic>modelling</topic><topic>Operators (mathematics)</topic><topic>P-waves</topic><topic>Phase velocity</topic><topic>S waves</topic><topic>Seismic data</topic><topic>Seismic stability</topic><topic>Seismic waves</topic><topic>Simulation</topic><topic>Sound waves</topic><topic>Symmetry</topic><topic>Velocity</topic><topic>Wave equations</topic><topic>Wave phase</topic><topic>Wave propagation</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Junzhen</creatorcontrib><creatorcontrib>Wu, Guochen</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Liu, Hongying</creatorcontrib><creatorcontrib>Zhang, Bo</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Junzhen</au><au>Wu, Guochen</au><au>Yang, Sen</au><au>Liu, Hongying</au><au>Zhang, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis</atitle><jtitle>Geophysical Prospecting</jtitle><date>2023-01</date><risdate>2023</risdate><volume>71</volume><issue>1</issue><spage>102</spage><epage>113</epage><pages>102-113</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P‐mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P‐mode wave by setting the axial S‐wave phase velocity to zero. However, the separated pure P‐wave of this approach is coupled with undesired S‐wave in anisotropic media called S‐wave artefacts. To eliminate the S‐wave artefacts in acoustic waves for anisotropic media, we set the vertical S‐wave phase velocity as a function related to propagation directions. Then, we derive a pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S‐wave phase velocity. The differential form of new expression for pure P‐wave is reduced to second‐order by inserting the expression of S‐wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P‐wave equation.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.13286</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2997-0812</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2023-01, Vol.71 (1), p.102-113 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_proquest_journals_2754516155 |
source | Access via Wiley Online Library |
subjects | Acoustic waves Anisotropic media anisotropy Approximation Elastic anisotropy Finite difference method Isotropic media Kinematics modelling Operators (mathematics) P-waves Phase velocity S waves Seismic data Seismic stability Seismic waves Simulation Sound waves Symmetry Velocity Wave equations Wave phase Wave propagation Wave velocity |
title | Simulation of improved pure P‐wave equation in transversely isotropic media with a horizontal symmetry axis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20improved%20pure%20P%E2%80%90wave%20equation%20in%20transversely%20isotropic%20media%20with%20a%20horizontal%20symmetry%20axis&rft.jtitle=Geophysical%20Prospecting&rft.au=Shan,%20Junzhen&rft.date=2023-01&rft.volume=71&rft.issue=1&rft.spage=102&rft.epage=113&rft.pages=102-113&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.13286&rft_dat=%3Cproquest_cross%3E2754516155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754516155&rft_id=info:pmid/&rfr_iscdi=true |