Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives

Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2023, Vol.107 (1), p.327-339
Hauptverfasser: Suo, Yukai, Li, Wenyi, Wan, Liqiong, Luo, Linshuang, Liu, Shuang, Qin, Shiwen, Wang, Jufang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 1
container_start_page 327
container_title Applied microbiology and biotechnology
container_volume 107
creator Suo, Yukai
Li, Wenyi
Wan, Liqiong
Luo, Linshuang
Liu, Shuang
Qin, Shiwen
Wang, Jufang
description Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum , which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum . This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. Key points • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.
doi_str_mv 10.1007/s00253-022-12281-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2754213921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A730143904</galeid><sourcerecordid>A730143904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-f72625b50557a4176ecbfbb1770f8639334b743dde7c3cbea50efde407619bca3</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYModq1-AR8k4JMPU_M_M49l0VooCFqfQyZzs6bMTNYks7rf3my3VhZEQnK5ye8cuDkIvabkghKi32dCmOQNYayhjLW00U_QigrOGqKoeIpWhGrZaNm1Z-hFzneEUNYq9RydcSVoKwVfofk22Tm7FLYlToDtbMd9Dhkn2IEdD9XmOGfsY8LlO-Ax_sQljlBVDnD0eD3GXFIYwjLhsk-xX-oZ3KGL2C-VwwOksLMl7CC_RM98tYVXD_Ucffv44Xb9qbn5fHW9vrxpnNCqNF4zxWQviZTaCqoVuN73PdWa-FbxjnPRa8GHAbTjrgcrCfgBBNGKdr2z_By9PfpuU_yxQC7mLi6pDpcN01Iwyru6H6mNHcGE2ceSrJtCduZSc1K_siOiUhf_oOoaYAouzuBDvT8RvDsRVKbAr7KxS87m-uuXU5YdWZdizgm82aYw2bQ3lJhDyuaYsqkpm_uUja6iNw_TLf0Ew6PkT6wV4Ecg16d5A-nv-P-x_Q3g57Jd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754213921</pqid></control><display><type>article</type><title>Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Suo, Yukai ; Li, Wenyi ; Wan, Liqiong ; Luo, Linshuang ; Liu, Shuang ; Qin, Shiwen ; Wang, Jufang</creator><creatorcontrib>Suo, Yukai ; Li, Wenyi ; Wan, Liqiong ; Luo, Linshuang ; Liu, Shuang ; Qin, Shiwen ; Wang, Jufang</creatorcontrib><description>Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum , which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum . This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. Key points • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-022-12281-7</identifier><identifier>PMID: 36418543</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Alcohols ; Analysis ; Bioconversion ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Butyric acid ; Butyric Acid - metabolism ; Clostridium ; Clostridium tyrobutyricum - genetics ; Clostridium tyrobutyricum - metabolism ; Enzymatic activity ; Enzyme activity ; Fermentation ; Furans ; Furans - metabolism ; Furfural ; Gene expression ; Gene Expression Profiling ; Gene regulation ; Genes ; Genetic aspects ; Genetic transcription ; Genomics ; Heat shock proteins ; Heat-Shock Proteins - genetics ; Hydroxymethylfurfural ; Identification and classification ; Life Sciences ; Lignocellulose ; Membranes ; Microbial Genetics and Genomics ; Microbiology ; Protein transport ; Proteomics ; Reductases ; Toxicity ; Transcriptomes ; Transcriptomics</subject><ispartof>Applied microbiology and biotechnology, 2023, Vol.107 (1), p.327-339</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-f72625b50557a4176ecbfbb1770f8639334b743dde7c3cbea50efde407619bca3</citedby><cites>FETCH-LOGICAL-c476t-f72625b50557a4176ecbfbb1770f8639334b743dde7c3cbea50efde407619bca3</cites><orcidid>0000-0002-9932-1976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-022-12281-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-022-12281-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36418543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suo, Yukai</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Wan, Liqiong</creatorcontrib><creatorcontrib>Luo, Linshuang</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Qin, Shiwen</creatorcontrib><creatorcontrib>Wang, Jufang</creatorcontrib><title>Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum , which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum . This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. Key points • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.</description><subject>Acid production</subject><subject>Alcohols</subject><subject>Analysis</subject><subject>Bioconversion</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Butyric acid</subject><subject>Butyric Acid - metabolism</subject><subject>Clostridium</subject><subject>Clostridium tyrobutyricum - genetics</subject><subject>Clostridium tyrobutyricum - metabolism</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Fermentation</subject><subject>Furans</subject><subject>Furans - metabolism</subject><subject>Furfural</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomics</subject><subject>Heat shock proteins</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Hydroxymethylfurfural</subject><subject>Identification and classification</subject><subject>Life Sciences</subject><subject>Lignocellulose</subject><subject>Membranes</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Protein transport</subject><subject>Proteomics</subject><subject>Reductases</subject><subject>Toxicity</subject><subject>Transcriptomes</subject><subject>Transcriptomics</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kV9rFDEUxYModq1-AR8k4JMPU_M_M49l0VooCFqfQyZzs6bMTNYks7rf3my3VhZEQnK5ye8cuDkIvabkghKi32dCmOQNYayhjLW00U_QigrOGqKoeIpWhGrZaNm1Z-hFzneEUNYq9RydcSVoKwVfofk22Tm7FLYlToDtbMd9Dhkn2IEdD9XmOGfsY8LlO-Ax_sQljlBVDnD0eD3GXFIYwjLhsk-xX-oZ3KGL2C-VwwOksLMl7CC_RM98tYVXD_Ucffv44Xb9qbn5fHW9vrxpnNCqNF4zxWQviZTaCqoVuN73PdWa-FbxjnPRa8GHAbTjrgcrCfgBBNGKdr2z_By9PfpuU_yxQC7mLi6pDpcN01Iwyru6H6mNHcGE2ceSrJtCduZSc1K_siOiUhf_oOoaYAouzuBDvT8RvDsRVKbAr7KxS87m-uuXU5YdWZdizgm82aYw2bQ3lJhDyuaYsqkpm_uUja6iNw_TLf0Ew6PkT6wV4Ecg16d5A-nv-P-x_Q3g57Jd</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Suo, Yukai</creator><creator>Li, Wenyi</creator><creator>Wan, Liqiong</creator><creator>Luo, Linshuang</creator><creator>Liu, Shuang</creator><creator>Qin, Shiwen</creator><creator>Wang, Jufang</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9932-1976</orcidid></search><sort><creationdate>2023</creationdate><title>Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives</title><author>Suo, Yukai ; Li, Wenyi ; Wan, Liqiong ; Luo, Linshuang ; Liu, Shuang ; Qin, Shiwen ; Wang, Jufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-f72625b50557a4176ecbfbb1770f8639334b743dde7c3cbea50efde407619bca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acid production</topic><topic>Alcohols</topic><topic>Analysis</topic><topic>Bioconversion</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Butyric acid</topic><topic>Butyric Acid - metabolism</topic><topic>Clostridium</topic><topic>Clostridium tyrobutyricum - genetics</topic><topic>Clostridium tyrobutyricum - metabolism</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Fermentation</topic><topic>Furans</topic><topic>Furans - metabolism</topic><topic>Furfural</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomics</topic><topic>Heat shock proteins</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Hydroxymethylfurfural</topic><topic>Identification and classification</topic><topic>Life Sciences</topic><topic>Lignocellulose</topic><topic>Membranes</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Protein transport</topic><topic>Proteomics</topic><topic>Reductases</topic><topic>Toxicity</topic><topic>Transcriptomes</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Yukai</creatorcontrib><creatorcontrib>Li, Wenyi</creatorcontrib><creatorcontrib>Wan, Liqiong</creatorcontrib><creatorcontrib>Luo, Linshuang</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Qin, Shiwen</creatorcontrib><creatorcontrib>Wang, Jufang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Yukai</au><au>Li, Wenyi</au><au>Wan, Liqiong</au><au>Luo, Linshuang</au><au>Liu, Shuang</au><au>Qin, Shiwen</au><au>Wang, Jufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2023</date><risdate>2023</risdate><volume>107</volume><issue>1</issue><spage>327</spage><epage>339</epage><pages>327-339</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum , which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum . This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. Key points • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36418543</pmid><doi>10.1007/s00253-022-12281-7</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9932-1976</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2023, Vol.107 (1), p.327-339
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_2754213921
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acid production
Alcohols
Analysis
Bioconversion
Biomass
Biomedical and Life Sciences
Biotechnology
Butyric acid
Butyric Acid - metabolism
Clostridium
Clostridium tyrobutyricum - genetics
Clostridium tyrobutyricum - metabolism
Enzymatic activity
Enzyme activity
Fermentation
Furans
Furans - metabolism
Furfural
Gene expression
Gene Expression Profiling
Gene regulation
Genes
Genetic aspects
Genetic transcription
Genomics
Heat shock proteins
Heat-Shock Proteins - genetics
Hydroxymethylfurfural
Identification and classification
Life Sciences
Lignocellulose
Membranes
Microbial Genetics and Genomics
Microbiology
Protein transport
Proteomics
Reductases
Toxicity
Transcriptomes
Transcriptomics
title Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20reveals%20reasons%20for%20the%20low%20tolerance%20of%20Clostridium%20tyrobutyricum%20to%20furan%20derivatives&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Suo,%20Yukai&rft.date=2023&rft.volume=107&rft.issue=1&rft.spage=327&rft.epage=339&rft.pages=327-339&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-022-12281-7&rft_dat=%3Cgale_proqu%3EA730143904%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754213921&rft_id=info:pmid/36418543&rft_galeid=A730143904&rfr_iscdi=true