Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions

Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2022-12, Vol.27 (6), p.5914-5925
Hauptverfasser: Ye, Zhuang, Yu, Jianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5925
container_issue 6
container_start_page 5914
container_title IEEE/ASME transactions on mechatronics
container_volume 27
creator Ye, Zhuang
Yu, Jianbo
description Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.
doi_str_mv 10.1109/TMECH.2022.3191051
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2754151355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9841514</ieee_id><sourcerecordid>2754151355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExX9A3pp4nlxph_7cSQgagJ40ehtU3ZnsYottouGo__cIsTTzGTmed_MmyQXCH1EKK8fpzfDuz4HzvsCSwSFB8kJlhJTQPlyGHsoRCqlUMfJaQhvACAR8CT5GRGt2IwWujNfxIbOe1rG3lk2XS87E9za18RG7kMbG9ig0atut55R9-38O2udZ1NdvxpLfsPGOlJsZPTCumACe7IN-Ti3LXmyHXuOiLGLaGQbs9UJZ8lRq5eBzve1lzyNbx6Hd-nk4fZ-OJikNeeqS0WbCyiLotR8nqt5hliXpFWhc4F6nnGQBLptVJbPs7zgOYDQ0GQohMxEm9Wil1ztdFfefa4pdNVb_M1Gy4rnSqJCoVS84rur2rsQPLXVypsP7TcVQrWNuvqLutpGXe2jjtDlDjJE9A-UxVZUil-_gnuT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754151355</pqid></control><display><type>article</type><title>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Zhuang ; Yu, Jianbo</creator><creatorcontrib>Ye, Zhuang ; Yu, Jianbo</creatorcontrib><description>Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2022.3191051</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Classifiers ; Correlation ; Deep learning ; Discrete cosine transform ; Discrete cosine transforms ; Domain adaptation ; Domains ; Fault diagnosis ; Feature extraction ; Generators ; Machinery ; machinery fault diagnosis ; multisource fusion ; negative correlation learning ; Vibrations ; Working conditions</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5914-5925</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</citedby><cites>FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</cites><orcidid>0000-0003-0652-9063 ; 0000-0003-3204-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9841514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9841514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Zhuang</creatorcontrib><creatorcontrib>Yu, Jianbo</creatorcontrib><title>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.</description><subject>Adaptation</subject><subject>Classifiers</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>Domain adaptation</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Generators</subject><subject>Machinery</subject><subject>machinery fault diagnosis</subject><subject>multisource fusion</subject><subject>negative correlation learning</subject><subject>Vibrations</subject><subject>Working conditions</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhjdGExX9A3pp4nlxph_7cSQgagJ40ehtU3ZnsYottouGo__cIsTTzGTmed_MmyQXCH1EKK8fpzfDuz4HzvsCSwSFB8kJlhJTQPlyGHsoRCqlUMfJaQhvACAR8CT5GRGt2IwWujNfxIbOe1rG3lk2XS87E9za18RG7kMbG9ig0atut55R9-38O2udZ1NdvxpLfsPGOlJsZPTCumACe7IN-Ti3LXmyHXuOiLGLaGQbs9UJZ8lRq5eBzve1lzyNbx6Hd-nk4fZ-OJikNeeqS0WbCyiLotR8nqt5hliXpFWhc4F6nnGQBLptVJbPs7zgOYDQ0GQohMxEm9Wil1ztdFfefa4pdNVb_M1Gy4rnSqJCoVS84rur2rsQPLXVypsP7TcVQrWNuvqLutpGXe2jjtDlDjJE9A-UxVZUil-_gnuT</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Ye, Zhuang</creator><creator>Yu, Jianbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0652-9063</orcidid><orcidid>https://orcid.org/0000-0003-3204-2486</orcidid></search><sort><creationdate>202212</creationdate><title>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</title><author>Ye, Zhuang ; Yu, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Classifiers</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>Domain adaptation</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Generators</topic><topic>Machinery</topic><topic>machinery fault diagnosis</topic><topic>multisource fusion</topic><topic>negative correlation learning</topic><topic>Vibrations</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhuang</creatorcontrib><creatorcontrib>Yu, Jianbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Zhuang</au><au>Yu, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-12</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>5914</spage><epage>5925</epage><pages>5914-5925</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2022.3191051</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0652-9063</orcidid><orcidid>https://orcid.org/0000-0003-3204-2486</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5914-5925
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2754151355
source IEEE Electronic Library (IEL)
subjects Adaptation
Classifiers
Correlation
Deep learning
Discrete cosine transform
Discrete cosine transforms
Domain adaptation
Domains
Fault diagnosis
Feature extraction
Generators
Machinery
machinery fault diagnosis
multisource fusion
negative correlation learning
Vibrations
Working conditions
title Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Negative%20Correlation%20Multisource%20Domains%20Adaptation%20Network%20for%20Machinery%20Fault%20Diagnosis%20Under%20Different%20Working%20Conditions&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Ye,%20Zhuang&rft.date=2022-12&rft.volume=27&rft.issue=6&rft.spage=5914&rft.epage=5925&rft.pages=5914-5925&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2022.3191051&rft_dat=%3Cproquest_RIE%3E2754151355%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754151355&rft_id=info:pmid/&rft_ieee_id=9841514&rfr_iscdi=true