Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions
Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2022-12, Vol.27 (6), p.5914-5925 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5925 |
---|---|
container_issue | 6 |
container_start_page | 5914 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 27 |
creator | Ye, Zhuang Yu, Jianbo |
description | Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance. |
doi_str_mv | 10.1109/TMECH.2022.3191051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2754151355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9841514</ieee_id><sourcerecordid>2754151355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGExX9A3pp4nlxph_7cSQgagJ40ehtU3ZnsYottouGo__cIsTTzGTmed_MmyQXCH1EKK8fpzfDuz4HzvsCSwSFB8kJlhJTQPlyGHsoRCqlUMfJaQhvACAR8CT5GRGt2IwWujNfxIbOe1rG3lk2XS87E9za18RG7kMbG9ig0atut55R9-38O2udZ1NdvxpLfsPGOlJsZPTCumACe7IN-Ti3LXmyHXuOiLGLaGQbs9UJZ8lRq5eBzve1lzyNbx6Hd-nk4fZ-OJikNeeqS0WbCyiLotR8nqt5hliXpFWhc4F6nnGQBLptVJbPs7zgOYDQ0GQohMxEm9Wil1ztdFfefa4pdNVb_M1Gy4rnSqJCoVS84rur2rsQPLXVypsP7TcVQrWNuvqLutpGXe2jjtDlDjJE9A-UxVZUil-_gnuT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754151355</pqid></control><display><type>article</type><title>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Zhuang ; Yu, Jianbo</creator><creatorcontrib>Ye, Zhuang ; Yu, Jianbo</creatorcontrib><description>Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2022.3191051</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Classifiers ; Correlation ; Deep learning ; Discrete cosine transform ; Discrete cosine transforms ; Domain adaptation ; Domains ; Fault diagnosis ; Feature extraction ; Generators ; Machinery ; machinery fault diagnosis ; multisource fusion ; negative correlation learning ; Vibrations ; Working conditions</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5914-5925</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</citedby><cites>FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</cites><orcidid>0000-0003-0652-9063 ; 0000-0003-3204-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9841514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9841514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Zhuang</creatorcontrib><creatorcontrib>Yu, Jianbo</creatorcontrib><title>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.</description><subject>Adaptation</subject><subject>Classifiers</subject><subject>Correlation</subject><subject>Deep learning</subject><subject>Discrete cosine transform</subject><subject>Discrete cosine transforms</subject><subject>Domain adaptation</subject><subject>Domains</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Generators</subject><subject>Machinery</subject><subject>machinery fault diagnosis</subject><subject>multisource fusion</subject><subject>negative correlation learning</subject><subject>Vibrations</subject><subject>Working conditions</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhjdGExX9A3pp4nlxph_7cSQgagJ40ehtU3ZnsYottouGo__cIsTTzGTmed_MmyQXCH1EKK8fpzfDuz4HzvsCSwSFB8kJlhJTQPlyGHsoRCqlUMfJaQhvACAR8CT5GRGt2IwWujNfxIbOe1rG3lk2XS87E9za18RG7kMbG9ig0atut55R9-38O2udZ1NdvxpLfsPGOlJsZPTCumACe7IN-Ti3LXmyHXuOiLGLaGQbs9UJZ8lRq5eBzve1lzyNbx6Hd-nk4fZ-OJikNeeqS0WbCyiLotR8nqt5hliXpFWhc4F6nnGQBLptVJbPs7zgOYDQ0GQohMxEm9Wil1ztdFfefa4pdNVb_M1Gy4rnSqJCoVS84rur2rsQPLXVypsP7TcVQrWNuvqLutpGXe2jjtDlDjJE9A-UxVZUil-_gnuT</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Ye, Zhuang</creator><creator>Yu, Jianbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0652-9063</orcidid><orcidid>https://orcid.org/0000-0003-3204-2486</orcidid></search><sort><creationdate>202212</creationdate><title>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</title><author>Ye, Zhuang ; Yu, Jianbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-3f7309889a2b75b611c9ea58a731ab6204e0afd567b67827003a0d6133463f6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Classifiers</topic><topic>Correlation</topic><topic>Deep learning</topic><topic>Discrete cosine transform</topic><topic>Discrete cosine transforms</topic><topic>Domain adaptation</topic><topic>Domains</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Generators</topic><topic>Machinery</topic><topic>machinery fault diagnosis</topic><topic>multisource fusion</topic><topic>negative correlation learning</topic><topic>Vibrations</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhuang</creatorcontrib><creatorcontrib>Yu, Jianbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Zhuang</au><au>Yu, Jianbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-12</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>5914</spage><epage>5925</epage><pages>5914-5925</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Machinery fault diagnosis is crucial to ensure production safety. Deep learning has been widely investigated in intelligent fault diagnosis. However, the mechanical equipment generally runs in a complex and polytropic condition. It is challenging to perform machinery fault diagnosis under polytopic conditions. In this article, a novel multisource domain adaptation method is proposed for machinery fault diagnosis under different working conditions. First, a deep negative correlation multisource domains adaptation network (DNC-MDAN) is proposed, where the information from multisource domains is transferred into target domain based on the multisource feature alignment and adversarial learning. Second, in order to make full of the multisource domains information, an ensemble classifier corresponding to multisource domains is developed, where a DNC learning is performed in the ensemble classifier. Third, an end-to-end feature generator, discrete cosine convolutional block, is proposed in DNC-MDAN, where discrete cosine transform is embedded in the network smoothly for noise reduction. In order to validate the effectiveness of DNC-MDAN for machinery fault diagnosis, three cases are considered in this article. In comparison with other transfer learning methods, DNC-MDAN has a better fault diagnosis performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2022.3191051</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0652-9063</orcidid><orcidid>https://orcid.org/0000-0003-3204-2486</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5914-5925 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2754151355 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Classifiers Correlation Deep learning Discrete cosine transform Discrete cosine transforms Domain adaptation Domains Fault diagnosis Feature extraction Generators Machinery machinery fault diagnosis multisource fusion negative correlation learning Vibrations Working conditions |
title | Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Negative%20Correlation%20Multisource%20Domains%20Adaptation%20Network%20for%20Machinery%20Fault%20Diagnosis%20Under%20Different%20Working%20Conditions&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Ye,%20Zhuang&rft.date=2022-12&rft.volume=27&rft.issue=6&rft.spage=5914&rft.epage=5925&rft.pages=5914-5925&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2022.3191051&rft_dat=%3Cproquest_RIE%3E2754151355%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754151355&rft_id=info:pmid/&rft_ieee_id=9841514&rfr_iscdi=true |