Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems

Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2022-12, Vol.27 (6), p.5792-5802
Hauptverfasser: Gerges, Mark, Chen, Xu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5802
container_issue 6
container_start_page 5792
container_title IEEE/ASME transactions on mechatronics
container_volume 27
creator Gerges, Mark
Chen, Xu
description Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.
doi_str_mv 10.1109/TMECH.2022.3189344
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2754151314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9837302</ieee_id><sourcerecordid>2754151314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1e9f0744ebb97f313857f1abc5da3498b2ed3b324984e4e8947e7db4f3d1407a3</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhRujiYj-Ab1s4rm4szt1u0fSoJCgHMSEW7Ntp7CEbmu3kPDvLUI8zcvMe_OSLwgegY8AuH5ZfkyS6UhwIUYSYi0Rr4IBaISQA66ue81jGSLK6Da4837LOUfgMAhW48I0nT0Qm9v1prNuzcq6Zcm-PVDBjCvYZ-32zvbLii2yLeWdZ9axRdPVFeUb42xudmzmfNOfbO3Y19F3VPn74KY0O08PlzkMvt8my2Qazhfvs2Q8D3OBr10IpEuuECnLtColyDhSJZgsjwojUceZoEJmUvQSCSnWqEgVGZayAOTKyGHwfP7btPXPnnyXbut96_rKVKgIIQIJ2LvE2ZW3tfctlWnT2sq0xxR4eiKY_hFMTwTTC8E-9HQOWSL6D-hYKsmF_AUxp207</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754151314</pqid></control><display><type>article</type><title>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gerges, Mark ; Chen, Xu</creator><creatorcontrib>Gerges, Mark ; Chen, Xu</creatorcontrib><description>Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2022.3189344</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace industry ; Artificial neural networks ; Controlled lighting ; Exact solutions ; glare and gradient elimination ; Illuminance ; illuminance distribution ; Illumination ; Inspection ; Light sources ; Lighting ; Luminance distribution ; machine learning ; Manufacturing ; optimal lighting ; robotic imaging ; Surface topography ; Surface treatment ; Visualization ; Workpieces</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5792-5802</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1e9f0744ebb97f313857f1abc5da3498b2ed3b324984e4e8947e7db4f3d1407a3</cites><orcidid>0000-0002-9601-0195 ; 0000-0002-4604-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9837302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9837302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gerges, Mark</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><title>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.</description><subject>Aerospace industry</subject><subject>Artificial neural networks</subject><subject>Controlled lighting</subject><subject>Exact solutions</subject><subject>glare and gradient elimination</subject><subject>Illuminance</subject><subject>illuminance distribution</subject><subject>Illumination</subject><subject>Inspection</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Luminance distribution</subject><subject>machine learning</subject><subject>Manufacturing</subject><subject>optimal lighting</subject><subject>robotic imaging</subject><subject>Surface topography</subject><subject>Surface treatment</subject><subject>Visualization</subject><subject>Workpieces</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwkAQhRujiYj-Ab1s4rm4szt1u0fSoJCgHMSEW7Ntp7CEbmu3kPDvLUI8zcvMe_OSLwgegY8AuH5ZfkyS6UhwIUYSYi0Rr4IBaISQA66ue81jGSLK6Da4837LOUfgMAhW48I0nT0Qm9v1prNuzcq6Zcm-PVDBjCvYZ-32zvbLii2yLeWdZ9axRdPVFeUb42xudmzmfNOfbO3Y19F3VPn74KY0O08PlzkMvt8my2Qazhfvs2Q8D3OBr10IpEuuECnLtColyDhSJZgsjwojUceZoEJmUvQSCSnWqEgVGZayAOTKyGHwfP7btPXPnnyXbut96_rKVKgIIQIJ2LvE2ZW3tfctlWnT2sq0xxR4eiKY_hFMTwTTC8E-9HQOWSL6D-hYKsmF_AUxp207</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Gerges, Mark</creator><creator>Chen, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9601-0195</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></search><sort><creationdate>202212</creationdate><title>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</title><author>Gerges, Mark ; Chen, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1e9f0744ebb97f313857f1abc5da3498b2ed3b324984e4e8947e7db4f3d1407a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace industry</topic><topic>Artificial neural networks</topic><topic>Controlled lighting</topic><topic>Exact solutions</topic><topic>glare and gradient elimination</topic><topic>Illuminance</topic><topic>illuminance distribution</topic><topic>Illumination</topic><topic>Inspection</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Luminance distribution</topic><topic>machine learning</topic><topic>Manufacturing</topic><topic>optimal lighting</topic><topic>robotic imaging</topic><topic>Surface topography</topic><topic>Surface treatment</topic><topic>Visualization</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerges, Mark</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gerges, Mark</au><au>Chen, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-12</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>5792</spage><epage>5802</epage><pages>5792-5802</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2022.3189344</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9601-0195</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5792-5802
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_journals_2754151314
source IEEE Electronic Library (IEL)
subjects Aerospace industry
Artificial neural networks
Controlled lighting
Exact solutions
glare and gradient elimination
Illuminance
illuminance distribution
Illumination
Inspection
Light sources
Lighting
Luminance distribution
machine learning
Manufacturing
optimal lighting
robotic imaging
Surface topography
Surface treatment
Visualization
Workpieces
title Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Lighting%20for%20Curved%20and%20Nonuniform%20Objects%20in%20Optomechanical%20Inspection%20Systems&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Gerges,%20Mark&rft.date=2022-12&rft.volume=27&rft.issue=6&rft.spage=5792&rft.epage=5802&rft.pages=5792-5802&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2022.3189344&rft_dat=%3Cproquest_RIE%3E2754151314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754151314&rft_id=info:pmid/&rft_ieee_id=9837302&rfr_iscdi=true