Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems
Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for cons...
Gespeichert in:
Veröffentlicht in: | IEEE/ASME transactions on mechatronics 2022-12, Vol.27 (6), p.5792-5802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5802 |
---|---|
container_issue | 6 |
container_start_page | 5792 |
container_title | IEEE/ASME transactions on mechatronics |
container_volume | 27 |
creator | Gerges, Mark Chen, Xu |
description | Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network. |
doi_str_mv | 10.1109/TMECH.2022.3189344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2754151314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9837302</ieee_id><sourcerecordid>2754151314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1e9f0744ebb97f313857f1abc5da3498b2ed3b324984e4e8947e7db4f3d1407a3</originalsourceid><addsrcrecordid>eNo9kEFPwkAQhRujiYj-Ab1s4rm4szt1u0fSoJCgHMSEW7Ntp7CEbmu3kPDvLUI8zcvMe_OSLwgegY8AuH5ZfkyS6UhwIUYSYi0Rr4IBaISQA66ue81jGSLK6Da4837LOUfgMAhW48I0nT0Qm9v1prNuzcq6Zcm-PVDBjCvYZ-32zvbLii2yLeWdZ9axRdPVFeUb42xudmzmfNOfbO3Y19F3VPn74KY0O08PlzkMvt8my2Qazhfvs2Q8D3OBr10IpEuuECnLtColyDhSJZgsjwojUceZoEJmUvQSCSnWqEgVGZayAOTKyGHwfP7btPXPnnyXbut96_rKVKgIIQIJ2LvE2ZW3tfctlWnT2sq0xxR4eiKY_hFMTwTTC8E-9HQOWSL6D-hYKsmF_AUxp207</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754151314</pqid></control><display><type>article</type><title>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Gerges, Mark ; Chen, Xu</creator><creatorcontrib>Gerges, Mark ; Chen, Xu</creatorcontrib><description>Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2022.3189344</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aerospace industry ; Artificial neural networks ; Controlled lighting ; Exact solutions ; glare and gradient elimination ; Illuminance ; illuminance distribution ; Illumination ; Inspection ; Light sources ; Lighting ; Luminance distribution ; machine learning ; Manufacturing ; optimal lighting ; robotic imaging ; Surface topography ; Surface treatment ; Visualization ; Workpieces</subject><ispartof>IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5792-5802</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1e9f0744ebb97f313857f1abc5da3498b2ed3b324984e4e8947e7db4f3d1407a3</cites><orcidid>0000-0002-9601-0195 ; 0000-0002-4604-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9837302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9837302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gerges, Mark</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><title>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.</description><subject>Aerospace industry</subject><subject>Artificial neural networks</subject><subject>Controlled lighting</subject><subject>Exact solutions</subject><subject>glare and gradient elimination</subject><subject>Illuminance</subject><subject>illuminance distribution</subject><subject>Illumination</subject><subject>Inspection</subject><subject>Light sources</subject><subject>Lighting</subject><subject>Luminance distribution</subject><subject>machine learning</subject><subject>Manufacturing</subject><subject>optimal lighting</subject><subject>robotic imaging</subject><subject>Surface topography</subject><subject>Surface treatment</subject><subject>Visualization</subject><subject>Workpieces</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwkAQhRujiYj-Ab1s4rm4szt1u0fSoJCgHMSEW7Ntp7CEbmu3kPDvLUI8zcvMe_OSLwgegY8AuH5ZfkyS6UhwIUYSYi0Rr4IBaISQA66ue81jGSLK6Da4837LOUfgMAhW48I0nT0Qm9v1prNuzcq6Zcm-PVDBjCvYZ-32zvbLii2yLeWdZ9axRdPVFeUb42xudmzmfNOfbO3Y19F3VPn74KY0O08PlzkMvt8my2Qazhfvs2Q8D3OBr10IpEuuECnLtColyDhSJZgsjwojUceZoEJmUvQSCSnWqEgVGZayAOTKyGHwfP7btPXPnnyXbut96_rKVKgIIQIJ2LvE2ZW3tfctlWnT2sq0xxR4eiKY_hFMTwTTC8E-9HQOWSL6D-hYKsmF_AUxp207</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Gerges, Mark</creator><creator>Chen, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9601-0195</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></search><sort><creationdate>202212</creationdate><title>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</title><author>Gerges, Mark ; Chen, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1e9f0744ebb97f313857f1abc5da3498b2ed3b324984e4e8947e7db4f3d1407a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace industry</topic><topic>Artificial neural networks</topic><topic>Controlled lighting</topic><topic>Exact solutions</topic><topic>glare and gradient elimination</topic><topic>Illuminance</topic><topic>illuminance distribution</topic><topic>Illumination</topic><topic>Inspection</topic><topic>Light sources</topic><topic>Lighting</topic><topic>Luminance distribution</topic><topic>machine learning</topic><topic>Manufacturing</topic><topic>optimal lighting</topic><topic>robotic imaging</topic><topic>Surface topography</topic><topic>Surface treatment</topic><topic>Visualization</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerges, Mark</creatorcontrib><creatorcontrib>Chen, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gerges, Mark</au><au>Chen, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2022-12</date><risdate>2022</risdate><volume>27</volume><issue>6</issue><spage>5792</spage><epage>5802</epage><pages>5792-5802</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Visual inspection is omnipresent and critical in precision manufacturing. However, complex geometries of parts hinder uniform illumination, and high reflectivity challenges accurate focusing for digital visual data collection. This research provides a novel adaptive illuminance distribution for consistent lighting to facilitate quality imaging over complex-shaped, highly reflective surfaces. The central approach entails using arrays of independently controlled light sources to reliably generate different lighting patterns, structures, and colors. Such results consider the geometry, the 3-D pose of parts in the environment, and the surface topography of the workpiece to be inspected, hence amplifying the capabilities of an image capturing system. In this article, we discuss the mathematical problem formulation, analytic solution, optimality of the proposed lighting, and experimental results in imaging curved parts common in aerospace manufacturing. The efficacy of the resulting defect identification is tested using a deep neural network.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2022.3189344</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9601-0195</orcidid><orcidid>https://orcid.org/0000-0002-4604-5744</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4435 |
ispartof | IEEE/ASME transactions on mechatronics, 2022-12, Vol.27 (6), p.5792-5802 |
issn | 1083-4435 1941-014X |
language | eng |
recordid | cdi_proquest_journals_2754151314 |
source | IEEE Electronic Library (IEL) |
subjects | Aerospace industry Artificial neural networks Controlled lighting Exact solutions glare and gradient elimination Illuminance illuminance distribution Illumination Inspection Light sources Lighting Luminance distribution machine learning Manufacturing optimal lighting robotic imaging Surface topography Surface treatment Visualization Workpieces |
title | Adaptive Lighting for Curved and Nonuniform Objects in Optomechanical Inspection Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Lighting%20for%20Curved%20and%20Nonuniform%20Objects%20in%20Optomechanical%20Inspection%20Systems&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Gerges,%20Mark&rft.date=2022-12&rft.volume=27&rft.issue=6&rft.spage=5792&rft.epage=5802&rft.pages=5792-5802&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2022.3189344&rft_dat=%3Cproquest_RIE%3E2754151314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754151314&rft_id=info:pmid/&rft_ieee_id=9837302&rfr_iscdi=true |