3D human pose estimation based on negative exponential reduction Gaussian kernel
Human pose estimation has become an important research direction in the field of motion recognition. 3D human pose estimation adds depth information to 2D pose estimation, which is more widely used. In this paper, the weight of each voxel is calculated in the 3D discrete space by projecting the join...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-12, Vol.2400 (1), p.12011 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12011 |
container_title | Journal of physics. Conference series |
container_volume | 2400 |
creator | Gu, Lanqing Wang, Yu |
description | Human pose estimation has become an important research direction in the field of motion recognition. 3D human pose estimation adds depth information to 2D pose estimation, which is more widely used. In this paper, the weight of each voxel is calculated in the 3D discrete space by projecting the joint point heatmap to directly estimate the 3D human pose. To improve the accuracy of 3D human pose estimation, the Gaussian kernel of heatmap with the variable size is reduced by a negative exponent in the process of training. The dilated convolution of a small convolution kernel is used to replace the large convolution kernel to solve the problem of large computation overhead when detecting key points in discrete 3D space. Experimental results show that this method is effective and can accurately estimate the 3D pose in multi view images. |
doi_str_mv | 10.1088/1742-6596/2400/1/012011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754067854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754067854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-37eebffad83477aad60d3aafd9a52f7643b2a9064a7a3aa8fef2c25fd64240143</originalsourceid><addsrcrecordid>eNqFkG9LwzAQxoMoOKefwYLvhNr8a5O9lKlTGThQX4drk2jn1tRkFf32plYmgmDe5Lj73XN3D0LHBJ8RLGVGBKdpkU-KjHKMM5JhQjEhO2i0rexuYyn30UEIS4xZfGKEFuwiee7W0CStCyYxYVOvYVO7JikhGJ3EoDFPMfMWi--ta0yzqWGVeKO76oubQRdCHQVejG_M6hDtWVgFc_T9j9Hj1eXD9Dqd381upufztKKCk5QJY0prQUvGhQDQBdYMwOoJ5NSKgrOSwgQXHATEvLTG0ormVhc8nkk4G6OTQbf17rWLe6ul63wTRyoqco4LIfOeEgNVeReCN1a1Ph7oPxTBqrdP9cao3iTV26eIGuyLnadDZ-3aH-nbxfT-N6habSPM_oD_G_EJhCN_vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754067854</pqid></control><display><type>article</type><title>3D human pose estimation based on negative exponential reduction Gaussian kernel</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gu, Lanqing ; Wang, Yu</creator><creatorcontrib>Gu, Lanqing ; Wang, Yu</creatorcontrib><description>Human pose estimation has become an important research direction in the field of motion recognition. 3D human pose estimation adds depth information to 2D pose estimation, which is more widely used. In this paper, the weight of each voxel is calculated in the 3D discrete space by projecting the joint point heatmap to directly estimate the 3D human pose. To improve the accuracy of 3D human pose estimation, the Gaussian kernel of heatmap with the variable size is reduced by a negative exponent in the process of training. The dilated convolution of a small convolution kernel is used to replace the large convolution kernel to solve the problem of large computation overhead when detecting key points in discrete 3D space. Experimental results show that this method is effective and can accurately estimate the 3D pose in multi view images.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2400/1/012011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Convolution ; Human motion ; Kernels ; Motion perception ; Physics ; Pose estimation ; Three dimensional motion</subject><ispartof>Journal of physics. Conference series, 2022-12, Vol.2400 (1), p.12011</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2400/1/012011/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Gu, Lanqing</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><title>3D human pose estimation based on negative exponential reduction Gaussian kernel</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Human pose estimation has become an important research direction in the field of motion recognition. 3D human pose estimation adds depth information to 2D pose estimation, which is more widely used. In this paper, the weight of each voxel is calculated in the 3D discrete space by projecting the joint point heatmap to directly estimate the 3D human pose. To improve the accuracy of 3D human pose estimation, the Gaussian kernel of heatmap with the variable size is reduced by a negative exponent in the process of training. The dilated convolution of a small convolution kernel is used to replace the large convolution kernel to solve the problem of large computation overhead when detecting key points in discrete 3D space. Experimental results show that this method is effective and can accurately estimate the 3D pose in multi view images.</description><subject>Convolution</subject><subject>Human motion</subject><subject>Kernels</subject><subject>Motion perception</subject><subject>Physics</subject><subject>Pose estimation</subject><subject>Three dimensional motion</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkG9LwzAQxoMoOKefwYLvhNr8a5O9lKlTGThQX4drk2jn1tRkFf32plYmgmDe5Lj73XN3D0LHBJ8RLGVGBKdpkU-KjHKMM5JhQjEhO2i0rexuYyn30UEIS4xZfGKEFuwiee7W0CStCyYxYVOvYVO7JikhGJ3EoDFPMfMWi--ta0yzqWGVeKO76oubQRdCHQVejG_M6hDtWVgFc_T9j9Hj1eXD9Dqd381upufztKKCk5QJY0prQUvGhQDQBdYMwOoJ5NSKgrOSwgQXHATEvLTG0ormVhc8nkk4G6OTQbf17rWLe6ul63wTRyoqco4LIfOeEgNVeReCN1a1Ph7oPxTBqrdP9cao3iTV26eIGuyLnadDZ-3aH-nbxfT-N6habSPM_oD_G_EJhCN_vw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Gu, Lanqing</creator><creator>Wang, Yu</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221201</creationdate><title>3D human pose estimation based on negative exponential reduction Gaussian kernel</title><author>Gu, Lanqing ; Wang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-37eebffad83477aad60d3aafd9a52f7643b2a9064a7a3aa8fef2c25fd64240143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convolution</topic><topic>Human motion</topic><topic>Kernels</topic><topic>Motion perception</topic><topic>Physics</topic><topic>Pose estimation</topic><topic>Three dimensional motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Lanqing</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Lanqing</au><au>Wang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D human pose estimation based on negative exponential reduction Gaussian kernel</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>2400</volume><issue>1</issue><spage>12011</spage><pages>12011-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Human pose estimation has become an important research direction in the field of motion recognition. 3D human pose estimation adds depth information to 2D pose estimation, which is more widely used. In this paper, the weight of each voxel is calculated in the 3D discrete space by projecting the joint point heatmap to directly estimate the 3D human pose. To improve the accuracy of 3D human pose estimation, the Gaussian kernel of heatmap with the variable size is reduced by a negative exponent in the process of training. The dilated convolution of a small convolution kernel is used to replace the large convolution kernel to solve the problem of large computation overhead when detecting key points in discrete 3D space. Experimental results show that this method is effective and can accurately estimate the 3D pose in multi view images.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2400/1/012011</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-12, Vol.2400 (1), p.12011 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2754067854 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Convolution Human motion Kernels Motion perception Physics Pose estimation Three dimensional motion |
title | 3D human pose estimation based on negative exponential reduction Gaussian kernel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20human%20pose%20estimation%20based%20on%20negative%20exponential%20reduction%20Gaussian%20kernel&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Gu,%20Lanqing&rft.date=2022-12-01&rft.volume=2400&rft.issue=1&rft.spage=12011&rft.pages=12011-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2400/1/012011&rft_dat=%3Cproquest_cross%3E2754067854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754067854&rft_id=info:pmid/&rfr_iscdi=true |