Recurrences for Quadrilateral High-Order Finite Elements
High order finite element methods (FEM) are well established numerical techniques for solving partial differential equations on complicated domains. In particular, if the unknown solution is smooth, using polynomial basis functions of higher degree speeds up the numerical solution significantly. At...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2022-12, Vol.16 (4), Article 32 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Mathematics in computer science |
container_volume | 16 |
creator | Beuchler, Sven Haubold, Tim Pillwein, Veronika |
description | High order finite element methods (FEM) are well established numerical techniques for solving partial differential equations on complicated domains. In particular, if the unknown solution is smooth, using polynomial basis functions of higher degree speeds up the numerical solution significantly. At the same time, the computations get much more involved and any simplification, such as efficient recurrence relations, are most welcome. Recently, computer algebra algorithms have been applied to improve FEMs in several ways. In this note, we present a symbolic approach to an issue occuring when working with quadrilateral elements. |
doi_str_mv | 10.1007/s11786-022-00547-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2754061654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754061654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-2ddf137005254f2a7a828297614d10bddcd27b95a92f278bb48bf54878fe5aac3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwicTbYG__liKqWIlWqQHC2nNguqdKkrJMDb08gCG6cdg4zs6OPkGvObjlj-i5xro2iDIAyJoWmcEJmXClODZji9Fdrdk4uUtozpoALPiPmOVQDYmirkLLYYfY0OI914_qArsnW9e6NbtEHzFZ1W_chWzbhENo-XZKz6JoUrn7unLyuli-LNd1sHx4X9xtagSh6Ct5HnutxFEgRwWk3DoJCKy48Z6X3lQddFtIVEEGbshSmjFIYbWKQzlX5nNxMvUfs3oeQervvBmzHlxa0FExxJcXogslVYZcShmiPWB8cfljO7BchOxGyIyH7TcjCGMqnUBrN7S7gX_U_qU-aEWfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754061654</pqid></control><display><type>article</type><title>Recurrences for Quadrilateral High-Order Finite Elements</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beuchler, Sven ; Haubold, Tim ; Pillwein, Veronika</creator><creatorcontrib>Beuchler, Sven ; Haubold, Tim ; Pillwein, Veronika</creatorcontrib><description>High order finite element methods (FEM) are well established numerical techniques for solving partial differential equations on complicated domains. In particular, if the unknown solution is smooth, using polynomial basis functions of higher degree speeds up the numerical solution significantly. At the same time, the computations get much more involved and any simplification, such as efficient recurrence relations, are most welcome. Recently, computer algebra algorithms have been applied to improve FEMs in several ways. In this note, we present a symbolic approach to an issue occuring when working with quadrilateral elements.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-022-00547-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Basis functions ; Computer algebra ; Computer Science ; Finite element method ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial differential equations ; Polynomials ; Quadrilaterals</subject><ispartof>Mathematics in computer science, 2022-12, Vol.16 (4), Article 32</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-2ddf137005254f2a7a828297614d10bddcd27b95a92f278bb48bf54878fe5aac3</citedby><cites>FETCH-LOGICAL-c249t-2ddf137005254f2a7a828297614d10bddcd27b95a92f278bb48bf54878fe5aac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-022-00547-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-022-00547-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beuchler, Sven</creatorcontrib><creatorcontrib>Haubold, Tim</creatorcontrib><creatorcontrib>Pillwein, Veronika</creatorcontrib><title>Recurrences for Quadrilateral High-Order Finite Elements</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>High order finite element methods (FEM) are well established numerical techniques for solving partial differential equations on complicated domains. In particular, if the unknown solution is smooth, using polynomial basis functions of higher degree speeds up the numerical solution significantly. At the same time, the computations get much more involved and any simplification, such as efficient recurrence relations, are most welcome. Recently, computer algebra algorithms have been applied to improve FEMs in several ways. In this note, we present a symbolic approach to an issue occuring when working with quadrilateral elements.</description><subject>Algorithms</subject><subject>Basis functions</subject><subject>Computer algebra</subject><subject>Computer Science</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Quadrilaterals</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwicTbYG__liKqWIlWqQHC2nNguqdKkrJMDb08gCG6cdg4zs6OPkGvObjlj-i5xro2iDIAyJoWmcEJmXClODZji9Fdrdk4uUtozpoALPiPmOVQDYmirkLLYYfY0OI914_qArsnW9e6NbtEHzFZ1W_chWzbhENo-XZKz6JoUrn7unLyuli-LNd1sHx4X9xtagSh6Ct5HnutxFEgRwWk3DoJCKy48Z6X3lQddFtIVEEGbshSmjFIYbWKQzlX5nNxMvUfs3oeQervvBmzHlxa0FExxJcXogslVYZcShmiPWB8cfljO7BchOxGyIyH7TcjCGMqnUBrN7S7gX_U_qU-aEWfY</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Beuchler, Sven</creator><creator>Haubold, Tim</creator><creator>Pillwein, Veronika</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Recurrences for Quadrilateral High-Order Finite Elements</title><author>Beuchler, Sven ; Haubold, Tim ; Pillwein, Veronika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-2ddf137005254f2a7a828297614d10bddcd27b95a92f278bb48bf54878fe5aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Basis functions</topic><topic>Computer algebra</topic><topic>Computer Science</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Quadrilaterals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beuchler, Sven</creatorcontrib><creatorcontrib>Haubold, Tim</creatorcontrib><creatorcontrib>Pillwein, Veronika</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beuchler, Sven</au><au>Haubold, Tim</au><au>Pillwein, Veronika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrences for Quadrilateral High-Order Finite Elements</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><artnum>32</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>High order finite element methods (FEM) are well established numerical techniques for solving partial differential equations on complicated domains. In particular, if the unknown solution is smooth, using polynomial basis functions of higher degree speeds up the numerical solution significantly. At the same time, the computations get much more involved and any simplification, such as efficient recurrence relations, are most welcome. Recently, computer algebra algorithms have been applied to improve FEMs in several ways. In this note, we present a symbolic approach to an issue occuring when working with quadrilateral elements.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-022-00547-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2022-12, Vol.16 (4), Article 32 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2754061654 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Basis functions Computer algebra Computer Science Finite element method Mathematical analysis Mathematics Mathematics and Statistics Partial differential equations Polynomials Quadrilaterals |
title | Recurrences for Quadrilateral High-Order Finite Elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrences%20for%20Quadrilateral%20High-Order%20Finite%20Elements&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Beuchler,%20Sven&rft.date=2022-12-01&rft.volume=16&rft.issue=4&rft.artnum=32&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-022-00547-2&rft_dat=%3Cproquest_cross%3E2754061654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754061654&rft_id=info:pmid/&rfr_iscdi=true |