Symplectic Partially Hyperbolic Automorphisms of 6-Torus

We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Lerman, L M, Trifonov, K N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lerman, L M
Trifonov, K N
description We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2753903126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753903126</sourcerecordid><originalsourceid>FETCH-proquest_journals_27539031263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCK7MLchJTS7JTFYISCwqyUzMyalU8KgsSC1Kys8BCjqWluTn5hcVZGQW5xYr5KcpmOmG5BeVFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRuamxpYGxoZGZMXGqAHPjNlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753903126</pqid></control><display><type>article</type><title>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</title><source>Free E- Journals</source><creator>Lerman, L M ; Trifonov, K N</creator><creatorcontrib>Lerman, L M ; Trifonov, K N</creatorcontrib><description>We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Eigenvalues ; Integers ; Mathematical analysis ; Matrices (mathematics) ; Subspaces ; Toruses</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lerman, L M</creatorcontrib><creatorcontrib>Trifonov, K N</creatorcontrib><title>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</title><title>arXiv.org</title><description>We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.</description><subject>Automorphisms</subject><subject>Eigenvalues</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Subspaces</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCK7MLchJTS7JTFYISCwqyUzMyalU8KgsSC1Kys8BCjqWluTn5hcVZGQW5xYr5KcpmOmG5BeVFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRuamxpYGxoZGZMXGqAHPjNlk</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Lerman, L M</creator><creator>Trifonov, K N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221209</creationdate><title>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</title><author>Lerman, L M ; Trifonov, K N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27539031263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Eigenvalues</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Subspaces</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Lerman, L M</creatorcontrib><creatorcontrib>Trifonov, K N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerman, L M</au><au>Trifonov, K N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</atitle><jtitle>arXiv.org</jtitle><date>2022-12-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2753903126
source Free E- Journals
subjects Automorphisms
Eigenvalues
Integers
Mathematical analysis
Matrices (mathematics)
Subspaces
Toruses
title Symplectic Partially Hyperbolic Automorphisms of 6-Torus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Symplectic%20Partially%20Hyperbolic%20Automorphisms%20of%206-Torus&rft.jtitle=arXiv.org&rft.au=Lerman,%20L%20M&rft.date=2022-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2753903126%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753903126&rft_id=info:pmid/&rfr_iscdi=true