Symplectic Partially Hyperbolic Automorphisms of 6-Torus
We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lerman, L M Trifonov, K N |
description | We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2753903126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753903126</sourcerecordid><originalsourceid>FETCH-proquest_journals_27539031263</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCK7MLchJTS7JTFYISCwqyUzMyalU8KgsSC1Kys8BCjqWluTn5hcVZGQW5xYr5KcpmOmG5BeVFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRuamxpYGxoZGZMXGqAHPjNlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753903126</pqid></control><display><type>article</type><title>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</title><source>Free E- Journals</source><creator>Lerman, L M ; Trifonov, K N</creator><creatorcontrib>Lerman, L M ; Trifonov, K N</creatorcontrib><description>We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Eigenvalues ; Integers ; Mathematical analysis ; Matrices (mathematics) ; Subspaces ; Toruses</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lerman, L M</creatorcontrib><creatorcontrib>Trifonov, K N</creatorcontrib><title>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</title><title>arXiv.org</title><description>We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.</description><subject>Automorphisms</subject><subject>Eigenvalues</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Subspaces</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCK7MLchJTS7JTFYISCwqyUzMyalU8KgsSC1Kys8BCjqWluTn5hcVZGQW5xYr5KcpmOmG5BeVFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRuamxpYGxoZGZMXGqAHPjNlk</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Lerman, L M</creator><creator>Trifonov, K N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221209</creationdate><title>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</title><author>Lerman, L M ; Trifonov, K N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27539031263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automorphisms</topic><topic>Eigenvalues</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Subspaces</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Lerman, L M</creatorcontrib><creatorcontrib>Trifonov, K N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerman, L M</au><au>Trifonov, K N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Symplectic Partially Hyperbolic Automorphisms of 6-Torus</atitle><jtitle>arXiv.org</jtitle><date>2022-12-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study topological properties of automorphisms of a 6-dimensional torus generated by integer matrices symplectic with respect to either the standard symplectic structure in six-dimensional linear space or a nonstandard symplectic structure given by an integer skew-symmetric non-degenerate matrix. Such a symplectic matrix generates a partially hyperbolic automorphism of the torus, if it has eigenvalues both outside and on the unit circle. We study the case (2,2,2), numbers are dimensions of stable, center and unstable subspaces of the matrix. We study transitive and decomposable cases possible here and present a classification in both cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2753903126 |
source | Free E- Journals |
subjects | Automorphisms Eigenvalues Integers Mathematical analysis Matrices (mathematics) Subspaces Toruses |
title | Symplectic Partially Hyperbolic Automorphisms of 6-Torus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Symplectic%20Partially%20Hyperbolic%20Automorphisms%20of%206-Torus&rft.jtitle=arXiv.org&rft.au=Lerman,%20L%20M&rft.date=2022-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2753903126%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753903126&rft_id=info:pmid/&rfr_iscdi=true |