Timeliness reduction on industrial turnover index based on machine learning algorithms
The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning...
Gespeichert in:
Veröffentlicht in: | Statistical journal of the IAOS 2022, Vol.38 (4), p.1195-1205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1205 |
---|---|
container_issue | 4 |
container_start_page | 1195 |
container_title | Statistical journal of the IAOS |
container_volume | 38 |
creator | Barreñada, Lasai Gálvez Sainz de Cueto, Juan Carlos Fernández Calatrava, Jorge |
description | The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control. |
doi_str_mv | 10.3233/SJI-220086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753698589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753698589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-eda9f2c59e45442c74a943d214c796ec979c0e8b4ce26a0b2f6c4032fc1de9323</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsXf8GCN2E1O_naHKVorRQ8WL2GNDvbpuxHTXZF_72pFQZmGJ6Zd-Yl5LqgdwwYu397WeQAlJbyhEyKUolcg-CnfzXPlRTinFzEuKNUaMX5hHysfIuN7zDGLGA1usH3XZbCd9UYh-Btkw1j6PovDIcefmdrG7E6IK112zSZNWhD57tNZptNH_ywbeMlOattE_HqP0_J-9PjavacL1_ni9nDMndAQeZYWV2DExq54Byc4lZzVkHBndISnVbaUSzX3CFIS9dQS8cpg9oVFer08ZTcHPfuQ_85YhzMrk_XJkkDSjCpS1HqRN0eKRf6GAPWZh98a8OPKag5-GaSb-boG_sFX2pg4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753698589</pqid></control><display><type>article</type><title>Timeliness reduction on industrial turnover index based on machine learning algorithms</title><source>EBSCOhost Business Source Complete</source><creator>Barreñada, Lasai ; Gálvez Sainz de Cueto, Juan Carlos ; Fernández Calatrava, Jorge</creator><creatorcontrib>Barreñada, Lasai ; Gálvez Sainz de Cueto, Juan Carlos ; Fernández Calatrava, Jorge</creatorcontrib><description>The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.</description><identifier>ISSN: 1874-7655</identifier><identifier>EISSN: 1875-9254</identifier><identifier>DOI: 10.3233/SJI-220086</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Machine learning ; Missing data ; Modernization ; Quality standards ; Statistical methods</subject><ispartof>Statistical journal of the IAOS, 2022, Vol.38 (4), p.1195-1205</ispartof><rights>Copyright IOS Press BV 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2026-eda9f2c59e45442c74a943d214c796ec979c0e8b4ce26a0b2f6c4032fc1de9323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Barreñada, Lasai</creatorcontrib><creatorcontrib>Gálvez Sainz de Cueto, Juan Carlos</creatorcontrib><creatorcontrib>Fernández Calatrava, Jorge</creatorcontrib><title>Timeliness reduction on industrial turnover index based on machine learning algorithms</title><title>Statistical journal of the IAOS</title><description>The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Missing data</subject><subject>Modernization</subject><subject>Quality standards</subject><subject>Statistical methods</subject><issn>1874-7655</issn><issn>1875-9254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsXf8GCN2E1O_naHKVorRQ8WL2GNDvbpuxHTXZF_72pFQZmGJ6Zd-Yl5LqgdwwYu397WeQAlJbyhEyKUolcg-CnfzXPlRTinFzEuKNUaMX5hHysfIuN7zDGLGA1usH3XZbCd9UYh-Btkw1j6PovDIcefmdrG7E6IK112zSZNWhD57tNZptNH_ywbeMlOattE_HqP0_J-9PjavacL1_ni9nDMndAQeZYWV2DExq54Byc4lZzVkHBndISnVbaUSzX3CFIS9dQS8cpg9oVFer08ZTcHPfuQ_85YhzMrk_XJkkDSjCpS1HqRN0eKRf6GAPWZh98a8OPKag5-GaSb-boG_sFX2pg4g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Barreñada, Lasai</creator><creator>Gálvez Sainz de Cueto, Juan Carlos</creator><creator>Fernández Calatrava, Jorge</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2022</creationdate><title>Timeliness reduction on industrial turnover index based on machine learning algorithms</title><author>Barreñada, Lasai ; Gálvez Sainz de Cueto, Juan Carlos ; Fernández Calatrava, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-eda9f2c59e45442c74a943d214c796ec979c0e8b4ce26a0b2f6c4032fc1de9323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Missing data</topic><topic>Modernization</topic><topic>Quality standards</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barreñada, Lasai</creatorcontrib><creatorcontrib>Gálvez Sainz de Cueto, Juan Carlos</creatorcontrib><creatorcontrib>Fernández Calatrava, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical journal of the IAOS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barreñada, Lasai</au><au>Gálvez Sainz de Cueto, Juan Carlos</au><au>Fernández Calatrava, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timeliness reduction on industrial turnover index based on machine learning algorithms</atitle><jtitle>Statistical journal of the IAOS</jtitle><date>2022</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>1195</spage><epage>1205</epage><pages>1195-1205</pages><issn>1874-7655</issn><eissn>1875-9254</eissn><abstract>The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/SJI-220086</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-7655 |
ispartof | Statistical journal of the IAOS, 2022, Vol.38 (4), p.1195-1205 |
issn | 1874-7655 1875-9254 |
language | eng |
recordid | cdi_proquest_journals_2753698589 |
source | EBSCOhost Business Source Complete |
subjects | Algorithms Machine learning Missing data Modernization Quality standards Statistical methods |
title | Timeliness reduction on industrial turnover index based on machine learning algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timeliness%20reduction%20on%20industrial%20turnover%20index%20based%20on%20machine%20learning%20algorithms&rft.jtitle=Statistical%20journal%20of%20the%20IAOS&rft.au=Barre%C3%B1ada,%20Lasai&rft.date=2022&rft.volume=38&rft.issue=4&rft.spage=1195&rft.epage=1205&rft.pages=1195-1205&rft.issn=1874-7655&rft.eissn=1875-9254&rft_id=info:doi/10.3233/SJI-220086&rft_dat=%3Cproquest_cross%3E2753698589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753698589&rft_id=info:pmid/&rfr_iscdi=true |