Timeliness reduction on industrial turnover index based on machine learning algorithms

The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical journal of the IAOS 2022, Vol.38 (4), p.1195-1205
Hauptverfasser: Barreñada, Lasai, Gálvez Sainz de Cueto, Juan Carlos, Fernández Calatrava, Jorge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1205
container_issue 4
container_start_page 1195
container_title Statistical journal of the IAOS
container_volume 38
creator Barreñada, Lasai
Gálvez Sainz de Cueto, Juan Carlos
Fernández Calatrava, Jorge
description The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.
doi_str_mv 10.3233/SJI-220086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753698589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753698589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-eda9f2c59e45442c74a943d214c796ec979c0e8b4ce26a0b2f6c4032fc1de9323</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKsXf8GCN2E1O_naHKVorRQ8WL2GNDvbpuxHTXZF_72pFQZmGJ6Zd-Yl5LqgdwwYu397WeQAlJbyhEyKUolcg-CnfzXPlRTinFzEuKNUaMX5hHysfIuN7zDGLGA1usH3XZbCd9UYh-Btkw1j6PovDIcefmdrG7E6IK112zSZNWhD57tNZptNH_ywbeMlOattE_HqP0_J-9PjavacL1_ni9nDMndAQeZYWV2DExq54Byc4lZzVkHBndISnVbaUSzX3CFIS9dQS8cpg9oVFer08ZTcHPfuQ_85YhzMrk_XJkkDSjCpS1HqRN0eKRf6GAPWZh98a8OPKag5-GaSb-boG_sFX2pg4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753698589</pqid></control><display><type>article</type><title>Timeliness reduction on industrial turnover index based on machine learning algorithms</title><source>EBSCOhost Business Source Complete</source><creator>Barreñada, Lasai ; Gálvez Sainz de Cueto, Juan Carlos ; Fernández Calatrava, Jorge</creator><creatorcontrib>Barreñada, Lasai ; Gálvez Sainz de Cueto, Juan Carlos ; Fernández Calatrava, Jorge</creatorcontrib><description>The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.</description><identifier>ISSN: 1874-7655</identifier><identifier>EISSN: 1875-9254</identifier><identifier>DOI: 10.3233/SJI-220086</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Machine learning ; Missing data ; Modernization ; Quality standards ; Statistical methods</subject><ispartof>Statistical journal of the IAOS, 2022, Vol.38 (4), p.1195-1205</ispartof><rights>Copyright IOS Press BV 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2026-eda9f2c59e45442c74a943d214c796ec979c0e8b4ce26a0b2f6c4032fc1de9323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Barreñada, Lasai</creatorcontrib><creatorcontrib>Gálvez Sainz de Cueto, Juan Carlos</creatorcontrib><creatorcontrib>Fernández Calatrava, Jorge</creatorcontrib><title>Timeliness reduction on industrial turnover index based on machine learning algorithms</title><title>Statistical journal of the IAOS</title><description>The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.</description><subject>Algorithms</subject><subject>Machine learning</subject><subject>Missing data</subject><subject>Modernization</subject><subject>Quality standards</subject><subject>Statistical methods</subject><issn>1874-7655</issn><issn>1875-9254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKsXf8GCN2E1O_naHKVorRQ8WL2GNDvbpuxHTXZF_72pFQZmGJ6Zd-Yl5LqgdwwYu397WeQAlJbyhEyKUolcg-CnfzXPlRTinFzEuKNUaMX5hHysfIuN7zDGLGA1usH3XZbCd9UYh-Btkw1j6PovDIcefmdrG7E6IK112zSZNWhD57tNZptNH_ywbeMlOattE_HqP0_J-9PjavacL1_ni9nDMndAQeZYWV2DExq54Byc4lZzVkHBndISnVbaUSzX3CFIS9dQS8cpg9oVFer08ZTcHPfuQ_85YhzMrk_XJkkDSjCpS1HqRN0eKRf6GAPWZh98a8OPKag5-GaSb-boG_sFX2pg4g</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Barreñada, Lasai</creator><creator>Gálvez Sainz de Cueto, Juan Carlos</creator><creator>Fernández Calatrava, Jorge</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2022</creationdate><title>Timeliness reduction on industrial turnover index based on machine learning algorithms</title><author>Barreñada, Lasai ; Gálvez Sainz de Cueto, Juan Carlos ; Fernández Calatrava, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-eda9f2c59e45442c74a943d214c796ec979c0e8b4ce26a0b2f6c4032fc1de9323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Machine learning</topic><topic>Missing data</topic><topic>Modernization</topic><topic>Quality standards</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barreñada, Lasai</creatorcontrib><creatorcontrib>Gálvez Sainz de Cueto, Juan Carlos</creatorcontrib><creatorcontrib>Fernández Calatrava, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical journal of the IAOS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barreñada, Lasai</au><au>Gálvez Sainz de Cueto, Juan Carlos</au><au>Fernández Calatrava, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Timeliness reduction on industrial turnover index based on machine learning algorithms</atitle><jtitle>Statistical journal of the IAOS</jtitle><date>2022</date><risdate>2022</risdate><volume>38</volume><issue>4</issue><spage>1195</spage><epage>1205</epage><pages>1195-1205</pages><issn>1874-7655</issn><eissn>1875-9254</eissn><abstract>The modernisation of the production of official statistics should make use not only of new data sources but also of novel statistical methods applied to traditional survey and administrative data. This improves the traditional quality standards. Here we present an application of statistical learning algorithms to improve the timeliness under a controlled compromise of accuracy of the Spanish Industrial Turnover Index (ITI). The methodology has been developed based on a modular and standardized approach that could be easily extended to other surveys. Our advanced index allows us to predict the ITI 31 days before publication with a median error of 0.5 points over the period Mar 2016–Apr 21, in an index with large oscillations. The results are promising and support the idea of the use of these techniques in improving the quality dimension of timeliness while accuracy is kept under control.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/SJI-220086</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1874-7655
ispartof Statistical journal of the IAOS, 2022, Vol.38 (4), p.1195-1205
issn 1874-7655
1875-9254
language eng
recordid cdi_proquest_journals_2753698589
source EBSCOhost Business Source Complete
subjects Algorithms
Machine learning
Missing data
Modernization
Quality standards
Statistical methods
title Timeliness reduction on industrial turnover index based on machine learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Timeliness%20reduction%20on%20industrial%20turnover%20index%20based%20on%20machine%20learning%20algorithms&rft.jtitle=Statistical%20journal%20of%20the%20IAOS&rft.au=Barre%C3%B1ada,%20Lasai&rft.date=2022&rft.volume=38&rft.issue=4&rft.spage=1195&rft.epage=1205&rft.pages=1195-1205&rft.issn=1874-7655&rft.eissn=1875-9254&rft_id=info:doi/10.3233/SJI-220086&rft_dat=%3Cproquest_cross%3E2753698589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753698589&rft_id=info:pmid/&rfr_iscdi=true