A novel low-light enhancement via fractional-order and low-rank regularized retinex model

Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2023-02, Vol.42 (1), Article 7
Hauptverfasser: Chen, Bao, Guo, Zhichang, Yao, Wenjuan, Ding, Xiaohua, Zhang, Dazhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 42
creator Chen, Bao
Guo, Zhichang
Yao, Wenjuan
Ding, Xiaohua
Zhang, Dazhi
description Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.
doi_str_mv 10.1007/s40314-022-02140-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753690660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753690660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwB6gsURvWj7NzZRTxkiLRQEFl-Xx7yYWLHexLePx6DoJER7HaLWZGOx8h5xwuOYC5ygokVwyEGIYrYPqAjPgEDAMJ4pCMhJATJjXIY3KS8wpAGq7UiDxPaYg77GgX31jXLpY9xbB0weMaQ093raNNcr5vY3Adi6nGRF2of-TJhReacLHtXGo_sR7uvg34Ttexxu6UHDWuy3j2u8fk6eb6cXbH5g-397PpnHnJy57xygspUXFlJkY3Qjouau1Qc1GgKAwCeIeuwqL0qAA9l5WppKmrglcSSzkmF_vcTYqvW8y9XcVtGr7NVphC6hL0UHtMxF7lU8w5YWM3qV279GE52G-Edo_QDgjtD0KrB5Pcm_IgDgtMf9H_uL4A7Ht0eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753690660</pqid></control><display><type>article</type><title>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Bao ; Guo, Zhichang ; Yao, Wenjuan ; Ding, Xiaohua ; Zhang, Dazhi</creator><creatorcontrib>Chen, Bao ; Guo, Zhichang ; Yao, Wenjuan ; Ding, Xiaohua ; Zhang, Dazhi</creatorcontrib><description>Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-02140-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Decomposition ; Illumination ; Image enhancement ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Reflectance</subject><ispartof>Computational &amp; applied mathematics, 2023-02, Vol.42 (1), Article 7</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</citedby><cites>FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</cites><orcidid>0000-0001-9463-9507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-02140-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-02140-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chen, Bao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Yao, Wenjuan</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><creatorcontrib>Zhang, Dazhi</creatorcontrib><title>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decomposition</subject><subject>Illumination</subject><subject>Image enhancement</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reflectance</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHwB6gsURvWj7NzZRTxkiLRQEFl-Xx7yYWLHexLePx6DoJER7HaLWZGOx8h5xwuOYC5ygokVwyEGIYrYPqAjPgEDAMJ4pCMhJATJjXIY3KS8wpAGq7UiDxPaYg77GgX31jXLpY9xbB0weMaQ093raNNcr5vY3Adi6nGRF2of-TJhReacLHtXGo_sR7uvg34Ttexxu6UHDWuy3j2u8fk6eb6cXbH5g-397PpnHnJy57xygspUXFlJkY3Qjouau1Qc1GgKAwCeIeuwqL0qAA9l5WppKmrglcSSzkmF_vcTYqvW8y9XcVtGr7NVphC6hL0UHtMxF7lU8w5YWM3qV279GE52G-Edo_QDgjtD0KrB5Pcm_IgDgtMf9H_uL4A7Ht0eA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chen, Bao</creator><creator>Guo, Zhichang</creator><creator>Yao, Wenjuan</creator><creator>Ding, Xiaohua</creator><creator>Zhang, Dazhi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9463-9507</orcidid></search><sort><creationdate>20230201</creationdate><title>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</title><author>Chen, Bao ; Guo, Zhichang ; Yao, Wenjuan ; Ding, Xiaohua ; Zhang, Dazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decomposition</topic><topic>Illumination</topic><topic>Image enhancement</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Yao, Wenjuan</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><creatorcontrib>Zhang, Dazhi</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bao</au><au>Guo, Zhichang</au><au>Yao, Wenjuan</au><au>Ding, Xiaohua</au><au>Zhang, Dazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><artnum>7</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-02140-6</doi><orcidid>https://orcid.org/0000-0001-9463-9507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2023-02, Vol.42 (1), Article 7
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2753690660
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Decomposition
Illumination
Image enhancement
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Reflectance
title A novel low-light enhancement via fractional-order and low-rank regularized retinex model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20low-light%20enhancement%20via%20fractional-order%20and%20low-rank%20regularized%20retinex%20model&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Chen,%20Bao&rft.date=2023-02-01&rft.volume=42&rft.issue=1&rft.artnum=7&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-02140-6&rft_dat=%3Cproquest_cross%3E2753690660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753690660&rft_id=info:pmid/&rfr_iscdi=true