A novel low-light enhancement via fractional-order and low-rank regularized retinex model
Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2023-02, Vol.42 (1), Article 7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 42 |
creator | Chen, Bao Guo, Zhichang Yao, Wenjuan Ding, Xiaohua Zhang, Dazhi |
description | Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality. |
doi_str_mv | 10.1007/s40314-022-02140-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753690660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753690660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</originalsourceid><addsrcrecordid>eNp9kDtPAzEQhC0EEiHwB6gsURvWj7NzZRTxkiLRQEFl-Xx7yYWLHexLePx6DoJER7HaLWZGOx8h5xwuOYC5ygokVwyEGIYrYPqAjPgEDAMJ4pCMhJATJjXIY3KS8wpAGq7UiDxPaYg77GgX31jXLpY9xbB0weMaQ093raNNcr5vY3Adi6nGRF2of-TJhReacLHtXGo_sR7uvg34Ttexxu6UHDWuy3j2u8fk6eb6cXbH5g-397PpnHnJy57xygspUXFlJkY3Qjouau1Qc1GgKAwCeIeuwqL0qAA9l5WppKmrglcSSzkmF_vcTYqvW8y9XcVtGr7NVphC6hL0UHtMxF7lU8w5YWM3qV279GE52G-Edo_QDgjtD0KrB5Pcm_IgDgtMf9H_uL4A7Ht0eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753690660</pqid></control><display><type>article</type><title>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Bao ; Guo, Zhichang ; Yao, Wenjuan ; Ding, Xiaohua ; Zhang, Dazhi</creator><creatorcontrib>Chen, Bao ; Guo, Zhichang ; Yao, Wenjuan ; Ding, Xiaohua ; Zhang, Dazhi</creatorcontrib><description>Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-02140-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Decomposition ; Illumination ; Image enhancement ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Reflectance</subject><ispartof>Computational & applied mathematics, 2023-02, Vol.42 (1), Article 7</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</citedby><cites>FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</cites><orcidid>0000-0001-9463-9507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-02140-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-02140-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chen, Bao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Yao, Wenjuan</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><creatorcontrib>Zhang, Dazhi</creatorcontrib><title>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Decomposition</subject><subject>Illumination</subject><subject>Image enhancement</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reflectance</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPAzEQhC0EEiHwB6gsURvWj7NzZRTxkiLRQEFl-Xx7yYWLHexLePx6DoJER7HaLWZGOx8h5xwuOYC5ygokVwyEGIYrYPqAjPgEDAMJ4pCMhJATJjXIY3KS8wpAGq7UiDxPaYg77GgX31jXLpY9xbB0weMaQ093raNNcr5vY3Adi6nGRF2of-TJhReacLHtXGo_sR7uvg34Ttexxu6UHDWuy3j2u8fk6eb6cXbH5g-397PpnHnJy57xygspUXFlJkY3Qjouau1Qc1GgKAwCeIeuwqL0qAA9l5WppKmrglcSSzkmF_vcTYqvW8y9XcVtGr7NVphC6hL0UHtMxF7lU8w5YWM3qV279GE52G-Edo_QDgjtD0KrB5Pcm_IgDgtMf9H_uL4A7Ht0eA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chen, Bao</creator><creator>Guo, Zhichang</creator><creator>Yao, Wenjuan</creator><creator>Ding, Xiaohua</creator><creator>Zhang, Dazhi</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9463-9507</orcidid></search><sort><creationdate>20230201</creationdate><title>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</title><author>Chen, Bao ; Guo, Zhichang ; Yao, Wenjuan ; Ding, Xiaohua ; Zhang, Dazhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1bc233e4147876f23a12d6ae6125e257e00caeabe59ce40ec13b7b37db51b3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Decomposition</topic><topic>Illumination</topic><topic>Image enhancement</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Bao</creatorcontrib><creatorcontrib>Guo, Zhichang</creatorcontrib><creatorcontrib>Yao, Wenjuan</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><creatorcontrib>Zhang, Dazhi</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Bao</au><au>Guo, Zhichang</au><au>Yao, Wenjuan</au><au>Ding, Xiaohua</au><au>Zhang, Dazhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel low-light enhancement via fractional-order and low-rank regularized retinex model</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>1</issue><artnum>7</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Most of existing low-light image enhancement approaches either fail to consider fine parts of the image or fail to consider intensive noise. To overcome these drawbacks, this paper proposes a new model called the fractional-order and low-rank regularized retinex model. Our model injects low-rank and fractional-order prior into a retinex decomposition process to suppress noise in the reflectance map and preserve the fine parts of the image. Our method estimates piece-wise smoothed illumination and noise-suppressed reflectance in turn, avoiding the residual noise in illumination and reflection maps that is usually present in alternative decomposition methods. After getting the estimated reflectance and illumination, we adjust the illumination layer to generate the enhancement result. Experiments on some challenging low-light images are presented to reveal the effect of our model and show its superiority over several state-of-the-arts in terms of enhancement efficiency and quality.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-02140-6</doi><orcidid>https://orcid.org/0000-0001-9463-9507</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2023-02, Vol.42 (1), Article 7 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2753690660 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Decomposition Illumination Image enhancement Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Reflectance |
title | A novel low-light enhancement via fractional-order and low-rank regularized retinex model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20low-light%20enhancement%20via%20fractional-order%20and%20low-rank%20regularized%20retinex%20model&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Chen,%20Bao&rft.date=2023-02-01&rft.volume=42&rft.issue=1&rft.artnum=7&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-02140-6&rft_dat=%3Cproquest_cross%3E2753690660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753690660&rft_id=info:pmid/&rfr_iscdi=true |