The Fourier-Jacobi expansion of the singular theta lift

Recently, Funke and Hofmann constructed a singular theta lift of Borcherds type for the dual reductive pair \(U(1,1)\times U(p,q)\), \(p,q\geq 1\), the input functions of which are harmonic weak Maass forms of weight \(k= 2-p-q\). In the present paper, we give an explicit evaluation of the Fourier-J...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
1. Verfasser: Hofmann, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hofmann, Eric
description Recently, Funke and Hofmann constructed a singular theta lift of Borcherds type for the dual reductive pair \(U(1,1)\times U(p,q)\), \(p,q\geq 1\), the input functions of which are harmonic weak Maass forms of weight \(k= 2-p-q\). In the present paper, we give an explicit evaluation of the Fourier-Jacobi expansion of the lift. For this purpose, we adapt a method introduced by Kudla in his paper 'Another product for a Borcherds form'. As an application, in the case \(U(p,1)\) we recover a new infinite product expansion associated to a Borcherds form, analogous to the case \(O(p,2)\) treated by Kudla.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2753447640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753447640</sourcerecordid><originalsourceid>FETCH-proquest_journals_27534476403</originalsourceid><addsrcrecordid>eNqNjMEKAiEURSUIGmr-QWgt2FPH9tEQrWc_WGg5iE4-hT6_CfqAVofLuZwVaUCIAztKgA1pESfOOXQalBIN0cPT0j7V7G1mV3NPN0_tezYRfYo0OVoWjz4-ajD5O4qhwbuyI2tnAtr2xy3Z9-fhdGFzTq9qsYzTEo2LGkErIaXuJBf_vT7nAzV3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753447640</pqid></control><display><type>article</type><title>The Fourier-Jacobi expansion of the singular theta lift</title><source>Free E- Journals</source><creator>Hofmann, Eric</creator><creatorcontrib>Hofmann, Eric</creatorcontrib><description>Recently, Funke and Hofmann constructed a singular theta lift of Borcherds type for the dual reductive pair \(U(1,1)\times U(p,q)\), \(p,q\geq 1\), the input functions of which are harmonic weak Maass forms of weight \(k= 2-p-q\). In the present paper, we give an explicit evaluation of the Fourier-Jacobi expansion of the lift. For this purpose, we adapt a method introduced by Kudla in his paper 'Another product for a Borcherds form'. As an application, in the case \(U(p,1)\) we recover a new infinite product expansion associated to a Borcherds form, analogous to the case \(O(p,2)\) treated by Kudla.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Harmonic functions</subject><ispartof>arXiv.org, 2022-12</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Hofmann, Eric</creatorcontrib><title>The Fourier-Jacobi expansion of the singular theta lift</title><title>arXiv.org</title><description>Recently, Funke and Hofmann constructed a singular theta lift of Borcherds type for the dual reductive pair \(U(1,1)\times U(p,q)\), \(p,q\geq 1\), the input functions of which are harmonic weak Maass forms of weight \(k= 2-p-q\). In the present paper, we give an explicit evaluation of the Fourier-Jacobi expansion of the lift. For this purpose, we adapt a method introduced by Kudla in his paper 'Another product for a Borcherds form'. As an application, in the case \(U(p,1)\) we recover a new infinite product expansion associated to a Borcherds form, analogous to the case \(O(p,2)\) treated by Kudla.</description><subject>Harmonic functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKAiEURSUIGmr-QWgt2FPH9tEQrWc_WGg5iE4-hT6_CfqAVofLuZwVaUCIAztKgA1pESfOOXQalBIN0cPT0j7V7G1mV3NPN0_tezYRfYo0OVoWjz4-ajD5O4qhwbuyI2tnAtr2xy3Z9-fhdGFzTq9qsYzTEo2LGkErIaXuJBf_vT7nAzV3</recordid><startdate>20221209</startdate><enddate>20221209</enddate><creator>Hofmann, Eric</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221209</creationdate><title>The Fourier-Jacobi expansion of the singular theta lift</title><author>Hofmann, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27534476403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Harmonic functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Hofmann, Eric</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmann, Eric</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Fourier-Jacobi expansion of the singular theta lift</atitle><jtitle>arXiv.org</jtitle><date>2022-12-09</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Recently, Funke and Hofmann constructed a singular theta lift of Borcherds type for the dual reductive pair \(U(1,1)\times U(p,q)\), \(p,q\geq 1\), the input functions of which are harmonic weak Maass forms of weight \(k= 2-p-q\). In the present paper, we give an explicit evaluation of the Fourier-Jacobi expansion of the lift. For this purpose, we adapt a method introduced by Kudla in his paper 'Another product for a Borcherds form'. As an application, in the case \(U(p,1)\) we recover a new infinite product expansion associated to a Borcherds form, analogous to the case \(O(p,2)\) treated by Kudla.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2753447640
source Free E- Journals
subjects Harmonic functions
title The Fourier-Jacobi expansion of the singular theta lift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Fourier-Jacobi%20expansion%20of%20the%20singular%20theta%20lift&rft.jtitle=arXiv.org&rft.au=Hofmann,%20Eric&rft.date=2022-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2753447640%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753447640&rft_id=info:pmid/&rfr_iscdi=true