Implicit variance regularization in non-contrastive SSL
Non-contrastive SSL methods like BYOL and SimSiam rely on asymmetric predictor networks to avoid representational collapse without negative samples. Yet, how predictor networks facilitate stable learning is not fully understood. While previous theoretical analyses assumed Euclidean losses, most prac...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Manu Srinath Halvagal Laborieux, Axel Zenke, Friedemann |
description | Non-contrastive SSL methods like BYOL and SimSiam rely on asymmetric predictor networks to avoid representational collapse without negative samples. Yet, how predictor networks facilitate stable learning is not fully understood. While previous theoretical analyses assumed Euclidean losses, most practical implementations rely on cosine similarity. To gain further theoretical insight into non-contrastive SSL, we analytically study learning dynamics in conjunction with Euclidean and cosine similarity in the eigenspace of closed-form linear predictor networks. We show that both avoid collapse through implicit variance regularization albeit through different dynamical mechanisms. Moreover, we find that the eigenvalues act as effective learning rate multipliers and propose a family of isotropic loss functions (IsoLoss) that equalize convergence rates across eigenmodes. Empirically, IsoLoss speeds up the initial learning dynamics and increases robustness, thereby allowing us to dispense with the EMA target network typically used with non-contrastive methods. Our analysis sheds light on the variance regularization mechanisms of non-contrastive SSL and lays the theoretical grounds for crafting novel loss functions that shape the learning dynamics of the predictor's spectrum. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2753447524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753447524</sourcerecordid><originalsourceid>FETCH-proquest_journals_27534475243</originalsourceid><addsrcrecordid>eNqNir0KwjAYAIMgWLTvEHAOxC-JcRdFwa3uJYQoKfFLzU8Hn94OPoDTcdwtSANC7NhBAqxIm_PAOYe9BqVEQ_T1NQZvfaGTSd6gdTS5Zw2zfEzxEalHihGZjViSycVPjnbdbUOWDxOya39ck-35dD9e2Jjiu7pc-iHWhHPqQSshpVYgxX_XF0AtNhk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753447524</pqid></control><display><type>article</type><title>Implicit variance regularization in non-contrastive SSL</title><source>Free E- Journals</source><creator>Manu Srinath Halvagal ; Laborieux, Axel ; Zenke, Friedemann</creator><creatorcontrib>Manu Srinath Halvagal ; Laborieux, Axel ; Zenke, Friedemann</creatorcontrib><description>Non-contrastive SSL methods like BYOL and SimSiam rely on asymmetric predictor networks to avoid representational collapse without negative samples. Yet, how predictor networks facilitate stable learning is not fully understood. While previous theoretical analyses assumed Euclidean losses, most practical implementations rely on cosine similarity. To gain further theoretical insight into non-contrastive SSL, we analytically study learning dynamics in conjunction with Euclidean and cosine similarity in the eigenspace of closed-form linear predictor networks. We show that both avoid collapse through implicit variance regularization albeit through different dynamical mechanisms. Moreover, we find that the eigenvalues act as effective learning rate multipliers and propose a family of isotropic loss functions (IsoLoss) that equalize convergence rates across eigenmodes. Empirically, IsoLoss speeds up the initial learning dynamics and increases robustness, thereby allowing us to dispense with the EMA target network typically used with non-contrastive methods. Our analysis sheds light on the variance regularization mechanisms of non-contrastive SSL and lays the theoretical grounds for crafting novel loss functions that shape the learning dynamics of the predictor's spectrum.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Covariance matrix ; Eigenvalues ; Mathematical analysis ; Networks ; Regularization ; Supervised learning ; Variance</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Manu Srinath Halvagal</creatorcontrib><creatorcontrib>Laborieux, Axel</creatorcontrib><creatorcontrib>Zenke, Friedemann</creatorcontrib><title>Implicit variance regularization in non-contrastive SSL</title><title>arXiv.org</title><description>Non-contrastive SSL methods like BYOL and SimSiam rely on asymmetric predictor networks to avoid representational collapse without negative samples. Yet, how predictor networks facilitate stable learning is not fully understood. While previous theoretical analyses assumed Euclidean losses, most practical implementations rely on cosine similarity. To gain further theoretical insight into non-contrastive SSL, we analytically study learning dynamics in conjunction with Euclidean and cosine similarity in the eigenspace of closed-form linear predictor networks. We show that both avoid collapse through implicit variance regularization albeit through different dynamical mechanisms. Moreover, we find that the eigenvalues act as effective learning rate multipliers and propose a family of isotropic loss functions (IsoLoss) that equalize convergence rates across eigenmodes. Empirically, IsoLoss speeds up the initial learning dynamics and increases robustness, thereby allowing us to dispense with the EMA target network typically used with non-contrastive methods. Our analysis sheds light on the variance regularization mechanisms of non-contrastive SSL and lays the theoretical grounds for crafting novel loss functions that shape the learning dynamics of the predictor's spectrum.</description><subject>Covariance matrix</subject><subject>Eigenvalues</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Regularization</subject><subject>Supervised learning</subject><subject>Variance</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0KwjAYAIMgWLTvEHAOxC-JcRdFwa3uJYQoKfFLzU8Hn94OPoDTcdwtSANC7NhBAqxIm_PAOYe9BqVEQ_T1NQZvfaGTSd6gdTS5Zw2zfEzxEalHihGZjViSycVPjnbdbUOWDxOya39ck-35dD9e2Jjiu7pc-iHWhHPqQSshpVYgxX_XF0AtNhk</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Manu Srinath Halvagal</creator><creator>Laborieux, Axel</creator><creator>Zenke, Friedemann</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231027</creationdate><title>Implicit variance regularization in non-contrastive SSL</title><author>Manu Srinath Halvagal ; Laborieux, Axel ; Zenke, Friedemann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27534475243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Covariance matrix</topic><topic>Eigenvalues</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Regularization</topic><topic>Supervised learning</topic><topic>Variance</topic><toplevel>online_resources</toplevel><creatorcontrib>Manu Srinath Halvagal</creatorcontrib><creatorcontrib>Laborieux, Axel</creatorcontrib><creatorcontrib>Zenke, Friedemann</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manu Srinath Halvagal</au><au>Laborieux, Axel</au><au>Zenke, Friedemann</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Implicit variance regularization in non-contrastive SSL</atitle><jtitle>arXiv.org</jtitle><date>2023-10-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Non-contrastive SSL methods like BYOL and SimSiam rely on asymmetric predictor networks to avoid representational collapse without negative samples. Yet, how predictor networks facilitate stable learning is not fully understood. While previous theoretical analyses assumed Euclidean losses, most practical implementations rely on cosine similarity. To gain further theoretical insight into non-contrastive SSL, we analytically study learning dynamics in conjunction with Euclidean and cosine similarity in the eigenspace of closed-form linear predictor networks. We show that both avoid collapse through implicit variance regularization albeit through different dynamical mechanisms. Moreover, we find that the eigenvalues act as effective learning rate multipliers and propose a family of isotropic loss functions (IsoLoss) that equalize convergence rates across eigenmodes. Empirically, IsoLoss speeds up the initial learning dynamics and increases robustness, thereby allowing us to dispense with the EMA target network typically used with non-contrastive methods. Our analysis sheds light on the variance regularization mechanisms of non-contrastive SSL and lays the theoretical grounds for crafting novel loss functions that shape the learning dynamics of the predictor's spectrum.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2753447524 |
source | Free E- Journals |
subjects | Covariance matrix Eigenvalues Mathematical analysis Networks Regularization Supervised learning Variance |
title | Implicit variance regularization in non-contrastive SSL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Implicit%20variance%20regularization%20in%20non-contrastive%20SSL&rft.jtitle=arXiv.org&rft.au=Manu%20Srinath%20Halvagal&rft.date=2023-10-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2753447524%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753447524&rft_id=info:pmid/&rfr_iscdi=true |