Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction
Two novel ruthenium complexes belonging to the Ru(II)(DAD)(Cym) (DAD = diazadienyl) (Cym = cymene) compound family are introduced as promising precursors. Their chemical nature, potential for chemical vapor deposition (CVD), and possibly atomic layer deposition (ALD) are demonstrated. The developmen...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2022-12, Vol.9 (35), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 9 |
creator | Zanders, David Obenlüneschloß, Jorit Wree, Jan‐Lucas Jagosz, Julia Kaur, Parmish Boysen, Nils Rogalla, Detlef Kostka, Aleksander Bock, Claudia Öhl, Denis Gock, Michael Schuhmann, Wolfgang Devi, Anjana |
description | Two novel ruthenium complexes belonging to the Ru(II)(DAD)(Cym) (DAD = diazadienyl) (Cym = cymene) compound family are introduced as promising precursors. Their chemical nature, potential for chemical vapor deposition (CVD), and possibly atomic layer deposition (ALD) are demonstrated. The development of nonoxidative CVD processes yielding high‐quality Ru thin films is realized. Chemical analyses are exercised that vitiate the deceptive assumption of Ru(DAD)(Aryl) complexes being zero‐valent through clear evidence for the redox noninnocence of the DAD ligand. Two different CVD routes for the growth of Ru films are developed using Ru(tBu2DAD)(Cym). Ru thin films from both processes are subjected to thorough and comparative analyses that allowed to deduce similarities and differences in film growth. Ru thin films with a thickness of 30–35 nm grown on SiO2 yielded close‐to‐bulk resistivity values ranging from 12 to 16 µΩ cm. Catalysis evaluation of the films in the acidic oxygen evolution reaction (OER) results in promising performances based on overpotentials as low as 240 mV with Tafel slopes of 45–50 mV dec−1. Based on the degradation observed during electrochemical measurements, the impact of OER conditions on the layers is critically assessed by complementary methods.
Ru(II)(DAD)(Cym)‐type complexes are unearthed as new class of precursors for chemical vapor deposition processes owing to their promising thermal characteristics and reactivity. The growth of high‐purity Ru thin films by chemical vapor deposition with resistivities as low as 12–16 µΩ cm is demonstrated alongside excellent short‐term catalytic performance in the acidic oxygen evolution reaction. |
doi_str_mv | 10.1002/admi.202201709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753441712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753441712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-17ebef74fb1e58c8abd66d9e27ba28a9250a503b4b738cf9a8a52aeb06e40a4d3</originalsourceid><addsrcrecordid>eNqFkUFP20AQha2qSEXAteeRemkPSXfXdtbuLSJAI6UiiuBsjddjMsjeTXftUPf38ENxSNVy62lmNO997_Ci6KMUUymE-opVy1MllBJSi_xddKpkPpvoOBXv3-wfoosQHoUQUiqpsvg0er63e-KG7QNs-m5Llvv283L5BRaMv7FiskMToHYebjDAeouBYEE7F7hjZ2HtnaEQKHyDlXuCDQUOHe-5G0Yc3G3ZwjU3bQC01XgSe1iTH3EtWkMwvsdMmBuu2MDtr-GBLFztXdO_0jeE5rCcRyc1NoEu_syz6P766u7y-2R1e7O8nK8mJk51PpGaSqp1UpeS0sxkWFazWZWT0iWqDHOVCkxFXCaljjNT55hhqpBKMaNEYFLFZ9GnI3fn3c-eQlc8ut7bMbJQOo2TRGqpRtX0qDLeheCpLnaeW_RDIUVxKKM4lFH8LWM05EfDEzc0_EddzBc_lv-8L3EakHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753441712</pqid></control><display><type>article</type><title>Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zanders, David ; Obenlüneschloß, Jorit ; Wree, Jan‐Lucas ; Jagosz, Julia ; Kaur, Parmish ; Boysen, Nils ; Rogalla, Detlef ; Kostka, Aleksander ; Bock, Claudia ; Öhl, Denis ; Gock, Michael ; Schuhmann, Wolfgang ; Devi, Anjana</creator><creatorcontrib>Zanders, David ; Obenlüneschloß, Jorit ; Wree, Jan‐Lucas ; Jagosz, Julia ; Kaur, Parmish ; Boysen, Nils ; Rogalla, Detlef ; Kostka, Aleksander ; Bock, Claudia ; Öhl, Denis ; Gock, Michael ; Schuhmann, Wolfgang ; Devi, Anjana</creatorcontrib><description>Two novel ruthenium complexes belonging to the Ru(II)(DAD)(Cym) (DAD = diazadienyl) (Cym = cymene) compound family are introduced as promising precursors. Their chemical nature, potential for chemical vapor deposition (CVD), and possibly atomic layer deposition (ALD) are demonstrated. The development of nonoxidative CVD processes yielding high‐quality Ru thin films is realized. Chemical analyses are exercised that vitiate the deceptive assumption of Ru(DAD)(Aryl) complexes being zero‐valent through clear evidence for the redox noninnocence of the DAD ligand. Two different CVD routes for the growth of Ru films are developed using Ru(tBu2DAD)(Cym). Ru thin films from both processes are subjected to thorough and comparative analyses that allowed to deduce similarities and differences in film growth. Ru thin films with a thickness of 30–35 nm grown on SiO2 yielded close‐to‐bulk resistivity values ranging from 12 to 16 µΩ cm. Catalysis evaluation of the films in the acidic oxygen evolution reaction (OER) results in promising performances based on overpotentials as low as 240 mV with Tafel slopes of 45–50 mV dec−1. Based on the degradation observed during electrochemical measurements, the impact of OER conditions on the layers is critically assessed by complementary methods.
Ru(II)(DAD)(Cym)‐type complexes are unearthed as new class of precursors for chemical vapor deposition processes owing to their promising thermal characteristics and reactivity. The growth of high‐purity Ru thin films by chemical vapor deposition with resistivities as low as 12–16 µΩ cm is demonstrated alongside excellent short‐term catalytic performance in the acidic oxygen evolution reaction.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202201709</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Atomic layer epitaxy ; Chemical vapor deposition ; chemical vapor deposition (CVD) ; Electrical resistivity ; Film growth ; oxygen evolution reaction ; Oxygen evolution reactions ; precursors ; resistivity ; Ruthenium compounds ; ruthenium thin films ; Silicon dioxide ; Thickness ; Thin films ; Vapor phases</subject><ispartof>Advanced materials interfaces, 2022-12, Vol.9 (35), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-17ebef74fb1e58c8abd66d9e27ba28a9250a503b4b738cf9a8a52aeb06e40a4d3</citedby><cites>FETCH-LOGICAL-c3579-17ebef74fb1e58c8abd66d9e27ba28a9250a503b4b738cf9a8a52aeb06e40a4d3</cites><orcidid>0000-0002-2275-3236 ; 0000-0002-6931-8506 ; 0000-0002-8306-4709 ; 0000-0003-3846-3855 ; 0000-0003-2916-5223 ; 0000-0002-5404-2498 ; 0000-0003-0933-9556 ; 0000-0003-2142-8105 ; 0000-0003-2505-3064 ; 0000-0001-5516-7738 ; 0000-0002-5907-7198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202201709$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202201709$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Zanders, David</creatorcontrib><creatorcontrib>Obenlüneschloß, Jorit</creatorcontrib><creatorcontrib>Wree, Jan‐Lucas</creatorcontrib><creatorcontrib>Jagosz, Julia</creatorcontrib><creatorcontrib>Kaur, Parmish</creatorcontrib><creatorcontrib>Boysen, Nils</creatorcontrib><creatorcontrib>Rogalla, Detlef</creatorcontrib><creatorcontrib>Kostka, Aleksander</creatorcontrib><creatorcontrib>Bock, Claudia</creatorcontrib><creatorcontrib>Öhl, Denis</creatorcontrib><creatorcontrib>Gock, Michael</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><creatorcontrib>Devi, Anjana</creatorcontrib><title>Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction</title><title>Advanced materials interfaces</title><description>Two novel ruthenium complexes belonging to the Ru(II)(DAD)(Cym) (DAD = diazadienyl) (Cym = cymene) compound family are introduced as promising precursors. Their chemical nature, potential for chemical vapor deposition (CVD), and possibly atomic layer deposition (ALD) are demonstrated. The development of nonoxidative CVD processes yielding high‐quality Ru thin films is realized. Chemical analyses are exercised that vitiate the deceptive assumption of Ru(DAD)(Aryl) complexes being zero‐valent through clear evidence for the redox noninnocence of the DAD ligand. Two different CVD routes for the growth of Ru films are developed using Ru(tBu2DAD)(Cym). Ru thin films from both processes are subjected to thorough and comparative analyses that allowed to deduce similarities and differences in film growth. Ru thin films with a thickness of 30–35 nm grown on SiO2 yielded close‐to‐bulk resistivity values ranging from 12 to 16 µΩ cm. Catalysis evaluation of the films in the acidic oxygen evolution reaction (OER) results in promising performances based on overpotentials as low as 240 mV with Tafel slopes of 45–50 mV dec−1. Based on the degradation observed during electrochemical measurements, the impact of OER conditions on the layers is critically assessed by complementary methods.
Ru(II)(DAD)(Cym)‐type complexes are unearthed as new class of precursors for chemical vapor deposition processes owing to their promising thermal characteristics and reactivity. The growth of high‐purity Ru thin films by chemical vapor deposition with resistivities as low as 12–16 µΩ cm is demonstrated alongside excellent short‐term catalytic performance in the acidic oxygen evolution reaction.</description><subject>Atomic layer epitaxy</subject><subject>Chemical vapor deposition</subject><subject>chemical vapor deposition (CVD)</subject><subject>Electrical resistivity</subject><subject>Film growth</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>precursors</subject><subject>resistivity</subject><subject>Ruthenium compounds</subject><subject>ruthenium thin films</subject><subject>Silicon dioxide</subject><subject>Thickness</subject><subject>Thin films</subject><subject>Vapor phases</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkUFP20AQha2qSEXAteeRemkPSXfXdtbuLSJAI6UiiuBsjddjMsjeTXftUPf38ENxSNVy62lmNO997_Ci6KMUUymE-opVy1MllBJSi_xddKpkPpvoOBXv3-wfoosQHoUQUiqpsvg0er63e-KG7QNs-m5Llvv283L5BRaMv7FiskMToHYebjDAeouBYEE7F7hjZ2HtnaEQKHyDlXuCDQUOHe-5G0Yc3G3ZwjU3bQC01XgSe1iTH3EtWkMwvsdMmBuu2MDtr-GBLFztXdO_0jeE5rCcRyc1NoEu_syz6P766u7y-2R1e7O8nK8mJk51PpGaSqp1UpeS0sxkWFazWZWT0iWqDHOVCkxFXCaljjNT55hhqpBKMaNEYFLFZ9GnI3fn3c-eQlc8ut7bMbJQOo2TRGqpRtX0qDLeheCpLnaeW_RDIUVxKKM4lFH8LWM05EfDEzc0_EddzBc_lv-8L3EakHA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zanders, David</creator><creator>Obenlüneschloß, Jorit</creator><creator>Wree, Jan‐Lucas</creator><creator>Jagosz, Julia</creator><creator>Kaur, Parmish</creator><creator>Boysen, Nils</creator><creator>Rogalla, Detlef</creator><creator>Kostka, Aleksander</creator><creator>Bock, Claudia</creator><creator>Öhl, Denis</creator><creator>Gock, Michael</creator><creator>Schuhmann, Wolfgang</creator><creator>Devi, Anjana</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2275-3236</orcidid><orcidid>https://orcid.org/0000-0002-6931-8506</orcidid><orcidid>https://orcid.org/0000-0002-8306-4709</orcidid><orcidid>https://orcid.org/0000-0003-3846-3855</orcidid><orcidid>https://orcid.org/0000-0003-2916-5223</orcidid><orcidid>https://orcid.org/0000-0002-5404-2498</orcidid><orcidid>https://orcid.org/0000-0003-0933-9556</orcidid><orcidid>https://orcid.org/0000-0003-2142-8105</orcidid><orcidid>https://orcid.org/0000-0003-2505-3064</orcidid><orcidid>https://orcid.org/0000-0001-5516-7738</orcidid><orcidid>https://orcid.org/0000-0002-5907-7198</orcidid></search><sort><creationdate>20221201</creationdate><title>Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction</title><author>Zanders, David ; Obenlüneschloß, Jorit ; Wree, Jan‐Lucas ; Jagosz, Julia ; Kaur, Parmish ; Boysen, Nils ; Rogalla, Detlef ; Kostka, Aleksander ; Bock, Claudia ; Öhl, Denis ; Gock, Michael ; Schuhmann, Wolfgang ; Devi, Anjana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-17ebef74fb1e58c8abd66d9e27ba28a9250a503b4b738cf9a8a52aeb06e40a4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic layer epitaxy</topic><topic>Chemical vapor deposition</topic><topic>chemical vapor deposition (CVD)</topic><topic>Electrical resistivity</topic><topic>Film growth</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>precursors</topic><topic>resistivity</topic><topic>Ruthenium compounds</topic><topic>ruthenium thin films</topic><topic>Silicon dioxide</topic><topic>Thickness</topic><topic>Thin films</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanders, David</creatorcontrib><creatorcontrib>Obenlüneschloß, Jorit</creatorcontrib><creatorcontrib>Wree, Jan‐Lucas</creatorcontrib><creatorcontrib>Jagosz, Julia</creatorcontrib><creatorcontrib>Kaur, Parmish</creatorcontrib><creatorcontrib>Boysen, Nils</creatorcontrib><creatorcontrib>Rogalla, Detlef</creatorcontrib><creatorcontrib>Kostka, Aleksander</creatorcontrib><creatorcontrib>Bock, Claudia</creatorcontrib><creatorcontrib>Öhl, Denis</creatorcontrib><creatorcontrib>Gock, Michael</creatorcontrib><creatorcontrib>Schuhmann, Wolfgang</creatorcontrib><creatorcontrib>Devi, Anjana</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanders, David</au><au>Obenlüneschloß, Jorit</au><au>Wree, Jan‐Lucas</au><au>Jagosz, Julia</au><au>Kaur, Parmish</au><au>Boysen, Nils</au><au>Rogalla, Detlef</au><au>Kostka, Aleksander</au><au>Bock, Claudia</au><au>Öhl, Denis</au><au>Gock, Michael</au><au>Schuhmann, Wolfgang</au><au>Devi, Anjana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>9</volume><issue>35</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Two novel ruthenium complexes belonging to the Ru(II)(DAD)(Cym) (DAD = diazadienyl) (Cym = cymene) compound family are introduced as promising precursors. Their chemical nature, potential for chemical vapor deposition (CVD), and possibly atomic layer deposition (ALD) are demonstrated. The development of nonoxidative CVD processes yielding high‐quality Ru thin films is realized. Chemical analyses are exercised that vitiate the deceptive assumption of Ru(DAD)(Aryl) complexes being zero‐valent through clear evidence for the redox noninnocence of the DAD ligand. Two different CVD routes for the growth of Ru films are developed using Ru(tBu2DAD)(Cym). Ru thin films from both processes are subjected to thorough and comparative analyses that allowed to deduce similarities and differences in film growth. Ru thin films with a thickness of 30–35 nm grown on SiO2 yielded close‐to‐bulk resistivity values ranging from 12 to 16 µΩ cm. Catalysis evaluation of the films in the acidic oxygen evolution reaction (OER) results in promising performances based on overpotentials as low as 240 mV with Tafel slopes of 45–50 mV dec−1. Based on the degradation observed during electrochemical measurements, the impact of OER conditions on the layers is critically assessed by complementary methods.
Ru(II)(DAD)(Cym)‐type complexes are unearthed as new class of precursors for chemical vapor deposition processes owing to their promising thermal characteristics and reactivity. The growth of high‐purity Ru thin films by chemical vapor deposition with resistivities as low as 12–16 µΩ cm is demonstrated alongside excellent short‐term catalytic performance in the acidic oxygen evolution reaction.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.202201709</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2275-3236</orcidid><orcidid>https://orcid.org/0000-0002-6931-8506</orcidid><orcidid>https://orcid.org/0000-0002-8306-4709</orcidid><orcidid>https://orcid.org/0000-0003-3846-3855</orcidid><orcidid>https://orcid.org/0000-0003-2916-5223</orcidid><orcidid>https://orcid.org/0000-0002-5404-2498</orcidid><orcidid>https://orcid.org/0000-0003-0933-9556</orcidid><orcidid>https://orcid.org/0000-0003-2142-8105</orcidid><orcidid>https://orcid.org/0000-0003-2505-3064</orcidid><orcidid>https://orcid.org/0000-0001-5516-7738</orcidid><orcidid>https://orcid.org/0000-0002-5907-7198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2022-12, Vol.9 (35), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_proquest_journals_2753441712 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic layer epitaxy Chemical vapor deposition chemical vapor deposition (CVD) Electrical resistivity Film growth oxygen evolution reaction Oxygen evolution reactions precursors resistivity Ruthenium compounds ruthenium thin films Silicon dioxide Thickness Thin films Vapor phases |
title | Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Ruthenium(II)%20Diazadienyls%20for%20Gas%20Phase%20Deposition%20Processes:%20Low%20Resistivity%20Ru%20Thin%20Films%20and%20Their%20Performance%20in%20the%20Acidic%20Oxygen%20Evolution%20Reaction&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Zanders,%20David&rft.date=2022-12-01&rft.volume=9&rft.issue=35&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202201709&rft_dat=%3Cproquest_cross%3E2753441712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753441712&rft_id=info:pmid/&rfr_iscdi=true |