Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics
In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such...
Gespeichert in:
Veröffentlicht in: | The ANZIAM journal 2002-04, Vol.43 (4), p.525-539 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 539 |
---|---|
container_issue | 4 |
container_start_page | 525 |
container_title | The ANZIAM journal |
container_volume | 43 |
creator | Bainov, D. D. Dishliev, A. B. Stamova, I. M. |
description | In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given. |
doi_str_mv | 10.1017/S1446181100012128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753384001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446181100012128</cupid><sourcerecordid>2753384001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</originalsourceid><addsrcrecordid>eNp1UctOxCAUbYwmjo8PcEfiugqlLbg0Ex01Jr5j4obcUqpoWzpAjfNHfqZ0OurCuIJ77jn33EcU7RF8QDBhh3ckTXPCCcEYk4QkfC2aDFDMGc3WV_8hvxltOfeKcUoZTSbR57UF6bWEGjkPha61XyBTIf-ikDN177Vp3QDoputrp98DvHBeNUuw1FWlrGq9hjr-DqRCat7DqHzXsKzVKP9iykEjTdOB1c60CNoymDQKQdfVoYdR4g3qTDBbhqhctNBo6XaijQpqp3ZX73b0cHpyPz2LL69m59Pjy1jSI-5jIgvK80rJXJUQ5k1lxggtMp4xFiYu2BGrFFNlEnCZ4wTSgkEW1kEIT1lJ6Ha0P9btrJn3ynnxanrbBkuRsIxSnoYFBxYZWdIa56yqRGd1A3YhCBbDQcSfgwRNPGp02N_HjwDsm8hDb5nIZzciv3i6vT7LuHgMfLrygKawunxWv6387_IF3T6gHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753384001</pqid></control><display><type>article</type><title>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</title><source>Alma/SFX Local Collection</source><creator>Bainov, D. D. ; Dishliev, A. B. ; Stamova, I. M.</creator><creatorcontrib>Bainov, D. D. ; Dishliev, A. B. ; Stamova, I. M.</creatorcontrib><description>In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.</description><identifier>ISSN: 1446-1811</identifier><identifier>EISSN: 1446-8735</identifier><identifier>DOI: 10.1017/S1446181100012128</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary value problems ; Continuity (mathematics) ; Difference equations ; Differential equations ; Mathematical analysis ; Stability</subject><ispartof>The ANZIAM journal, 2002-04, Vol.43 (4), p.525-539</ispartof><rights>Copyright © Australian Mathematical Society 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</citedby><cites>FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bainov, D. D.</creatorcontrib><creatorcontrib>Dishliev, A. B.</creatorcontrib><creatorcontrib>Stamova, I. M.</creatorcontrib><title>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</title><title>The ANZIAM journal</title><addtitle>ANZIAM J</addtitle><description>In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.</description><subject>Boundary value problems</subject><subject>Continuity (mathematics)</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Stability</subject><issn>1446-1811</issn><issn>1446-8735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UctOxCAUbYwmjo8PcEfiugqlLbg0Ex01Jr5j4obcUqpoWzpAjfNHfqZ0OurCuIJ77jn33EcU7RF8QDBhh3ckTXPCCcEYk4QkfC2aDFDMGc3WV_8hvxltOfeKcUoZTSbR57UF6bWEGjkPha61XyBTIf-ikDN177Vp3QDoputrp98DvHBeNUuw1FWlrGq9hjr-DqRCat7DqHzXsKzVKP9iykEjTdOB1c60CNoymDQKQdfVoYdR4g3qTDBbhqhctNBo6XaijQpqp3ZX73b0cHpyPz2LL69m59Pjy1jSI-5jIgvK80rJXJUQ5k1lxggtMp4xFiYu2BGrFFNlEnCZ4wTSgkEW1kEIT1lJ6Ha0P9btrJn3ynnxanrbBkuRsIxSnoYFBxYZWdIa56yqRGd1A3YhCBbDQcSfgwRNPGp02N_HjwDsm8hDb5nIZzciv3i6vT7LuHgMfLrygKawunxWv6387_IF3T6gHA</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Bainov, D. D.</creator><creator>Dishliev, A. B.</creator><creator>Stamova, I. M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020401</creationdate><title>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</title><author>Bainov, D. D. ; Dishliev, A. B. ; Stamova, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary value problems</topic><topic>Continuity (mathematics)</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bainov, D. D.</creatorcontrib><creatorcontrib>Dishliev, A. B.</creatorcontrib><creatorcontrib>Stamova, I. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The ANZIAM journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bainov, D. D.</au><au>Dishliev, A. B.</au><au>Stamova, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</atitle><jtitle>The ANZIAM journal</jtitle><addtitle>ANZIAM J</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>43</volume><issue>4</issue><spage>525</spage><epage>539</epage><pages>525-539</pages><issn>1446-1811</issn><eissn>1446-8735</eissn><abstract>In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446181100012128</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1446-1811 |
ispartof | The ANZIAM journal, 2002-04, Vol.43 (4), p.525-539 |
issn | 1446-1811 1446-8735 |
language | eng |
recordid | cdi_proquest_journals_2753384001 |
source | Alma/SFX Local Collection |
subjects | Boundary value problems Continuity (mathematics) Difference equations Differential equations Mathematical analysis Stability |
title | Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20stability%20of%20the%20solutions%20of%20impulsive%20systems%20of%20differential-difference%20equations%20via%20the%20method%20of%20comparison%20and%20some%20applications%20to%20population%20dynamics&rft.jtitle=The%20ANZIAM%20journal&rft.au=Bainov,%20D.%20D.&rft.date=2002-04-01&rft.volume=43&rft.issue=4&rft.spage=525&rft.epage=539&rft.pages=525-539&rft.issn=1446-1811&rft.eissn=1446-8735&rft_id=info:doi/10.1017/S1446181100012128&rft_dat=%3Cproquest_cross%3E2753384001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753384001&rft_id=info:pmid/&rft_cupid=10_1017_S1446181100012128&rfr_iscdi=true |