Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics

In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ANZIAM journal 2002-04, Vol.43 (4), p.525-539
Hauptverfasser: Bainov, D. D., Dishliev, A. B., Stamova, I. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 4
container_start_page 525
container_title The ANZIAM journal
container_volume 43
creator Bainov, D. D.
Dishliev, A. B.
Stamova, I. M.
description In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.
doi_str_mv 10.1017/S1446181100012128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753384001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1446181100012128</cupid><sourcerecordid>2753384001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</originalsourceid><addsrcrecordid>eNp1UctOxCAUbYwmjo8PcEfiugqlLbg0Ex01Jr5j4obcUqpoWzpAjfNHfqZ0OurCuIJ77jn33EcU7RF8QDBhh3ckTXPCCcEYk4QkfC2aDFDMGc3WV_8hvxltOfeKcUoZTSbR57UF6bWEGjkPha61XyBTIf-ikDN177Vp3QDoputrp98DvHBeNUuw1FWlrGq9hjr-DqRCat7DqHzXsKzVKP9iykEjTdOB1c60CNoymDQKQdfVoYdR4g3qTDBbhqhctNBo6XaijQpqp3ZX73b0cHpyPz2LL69m59Pjy1jSI-5jIgvK80rJXJUQ5k1lxggtMp4xFiYu2BGrFFNlEnCZ4wTSgkEW1kEIT1lJ6Ha0P9btrJn3ynnxanrbBkuRsIxSnoYFBxYZWdIa56yqRGd1A3YhCBbDQcSfgwRNPGp02N_HjwDsm8hDb5nIZzciv3i6vT7LuHgMfLrygKawunxWv6387_IF3T6gHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753384001</pqid></control><display><type>article</type><title>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</title><source>Alma/SFX Local Collection</source><creator>Bainov, D. D. ; Dishliev, A. B. ; Stamova, I. M.</creator><creatorcontrib>Bainov, D. D. ; Dishliev, A. B. ; Stamova, I. M.</creatorcontrib><description>In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.</description><identifier>ISSN: 1446-1811</identifier><identifier>EISSN: 1446-8735</identifier><identifier>DOI: 10.1017/S1446181100012128</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Boundary value problems ; Continuity (mathematics) ; Difference equations ; Differential equations ; Mathematical analysis ; Stability</subject><ispartof>The ANZIAM journal, 2002-04, Vol.43 (4), p.525-539</ispartof><rights>Copyright © Australian Mathematical Society 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</citedby><cites>FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bainov, D. D.</creatorcontrib><creatorcontrib>Dishliev, A. B.</creatorcontrib><creatorcontrib>Stamova, I. M.</creatorcontrib><title>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</title><title>The ANZIAM journal</title><addtitle>ANZIAM J</addtitle><description>In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.</description><subject>Boundary value problems</subject><subject>Continuity (mathematics)</subject><subject>Difference equations</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Stability</subject><issn>1446-1811</issn><issn>1446-8735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UctOxCAUbYwmjo8PcEfiugqlLbg0Ex01Jr5j4obcUqpoWzpAjfNHfqZ0OurCuIJ77jn33EcU7RF8QDBhh3ckTXPCCcEYk4QkfC2aDFDMGc3WV_8hvxltOfeKcUoZTSbR57UF6bWEGjkPha61XyBTIf-ikDN177Vp3QDoputrp98DvHBeNUuw1FWlrGq9hjr-DqRCat7DqHzXsKzVKP9iykEjTdOB1c60CNoymDQKQdfVoYdR4g3qTDBbhqhctNBo6XaijQpqp3ZX73b0cHpyPz2LL69m59Pjy1jSI-5jIgvK80rJXJUQ5k1lxggtMp4xFiYu2BGrFFNlEnCZ4wTSgkEW1kEIT1lJ6Ha0P9btrJn3ynnxanrbBkuRsIxSnoYFBxYZWdIa56yqRGd1A3YhCBbDQcSfgwRNPGp02N_HjwDsm8hDb5nIZzciv3i6vT7LuHgMfLrygKawunxWv6387_IF3T6gHA</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Bainov, D. D.</creator><creator>Dishliev, A. B.</creator><creator>Stamova, I. M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20020401</creationdate><title>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</title><author>Bainov, D. D. ; Dishliev, A. B. ; Stamova, I. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-1cb386fec6eda1814c5713b58577373b797fe7ed2c57c602a4b7a500411847d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Boundary value problems</topic><topic>Continuity (mathematics)</topic><topic>Difference equations</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bainov, D. D.</creatorcontrib><creatorcontrib>Dishliev, A. B.</creatorcontrib><creatorcontrib>Stamova, I. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The ANZIAM journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bainov, D. D.</au><au>Dishliev, A. B.</au><au>Stamova, I. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics</atitle><jtitle>The ANZIAM journal</jtitle><addtitle>ANZIAM J</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>43</volume><issue>4</issue><spage>525</spage><epage>539</epage><pages>525-539</pages><issn>1446-1811</issn><eissn>1446-8735</eissn><abstract>In this paper we consider an initial value problem for systems of impulsive differential-difference equations is considered. Making use of the method of comparison and differential inequalities for piecewise continuous functions, sufficient conditions for practical stability of the solutions of such systems are obtained. Applications to population dynamics are also given.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1446181100012128</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1446-1811
ispartof The ANZIAM journal, 2002-04, Vol.43 (4), p.525-539
issn 1446-1811
1446-8735
language eng
recordid cdi_proquest_journals_2753384001
source Alma/SFX Local Collection
subjects Boundary value problems
Continuity (mathematics)
Difference equations
Differential equations
Mathematical analysis
Stability
title Practical stability of the solutions of impulsive systems of differential-difference equations via the method of comparison and some applications to population dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Practical%20stability%20of%20the%20solutions%20of%20impulsive%20systems%20of%20differential-difference%20equations%20via%20the%20method%20of%20comparison%20and%20some%20applications%20to%20population%20dynamics&rft.jtitle=The%20ANZIAM%20journal&rft.au=Bainov,%20D.%20D.&rft.date=2002-04-01&rft.volume=43&rft.issue=4&rft.spage=525&rft.epage=539&rft.pages=525-539&rft.issn=1446-1811&rft.eissn=1446-8735&rft_id=info:doi/10.1017/S1446181100012128&rft_dat=%3Cproquest_cross%3E2753384001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753384001&rft_id=info:pmid/&rft_cupid=10_1017_S1446181100012128&rfr_iscdi=true