A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (rROP) of cyclic ketene acetal (CKA) using both experimental and theoretical approach

ABSTRACT Radical ring‐opening polymerization (rROP) reaction of cyclic ketene acetals (CKA) is an interesting route to biodegradable polymers. Contrary to their tremendous potential, fundamental understanding of their reaction kinetics and thermodynamics is still limited. We present experimental and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science (2020) 2020-06, Vol.58 (12), p.1728-1738
Hauptverfasser: Reddy Mothe, Srinivasa, Tan, Jacqueline S. J., Chennamaneni, Lohitha R., Aidil, Farhan, Su, Yi, Kang, Hway C., Lim, Freda C. H., Thoniyot, Praveen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1738
container_issue 12
container_start_page 1728
container_title Journal of polymer science (2020)
container_volume 58
creator Reddy Mothe, Srinivasa
Tan, Jacqueline S. J.
Chennamaneni, Lohitha R.
Aidil, Farhan
Su, Yi
Kang, Hway C.
Lim, Freda C. H.
Thoniyot, Praveen
description ABSTRACT Radical ring‐opening polymerization (rROP) reaction of cyclic ketene acetals (CKA) is an interesting route to biodegradable polymers. Contrary to their tremendous potential, fundamental understanding of their reaction kinetics and thermodynamics is still limited. We present experimental and theoretical investigations for rROP reactions of CKA to systematically elucidate the effects of monomer ring sizes on the homopolymerization. We aim to provide insights on the structural‐reactivity relationship of CKA by studying the thermodynamics and kinetics of the forward ring‐opening propagation reactions and key side reactions, namely ring‐retained propagation and radical back‐biting reaction leading to branching. Experimental results show that for the CKA with smaller ring sizes, significant amount of ring‐retained side products are formed when up to 90% of the monomers are converted. However, for the larger ring sizes (7 and 8 membered), almost complete ring‐opening polymerization with
doi_str_mv 10.1002/pol.20200210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753324447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753324447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3443-ce289ffdff907fb6b3d1b92ca9d61bfa56cbe49bf4952141731a185a8f0946373</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhSMEEqiw4wCW2FCJFv8lqZdVxZ-oVIRgHTnOmAbSONgukK44AvfhNpwEpwWWrDzW-948eyaKDgkeEozpaWOqIcU0lARvRXs04XTASSK2_-oY70YHzj3iwLA44TjZiz7HyLXOw0L6UqGyfgHny4dwMTUyGvk5IFvWD8iVK0CgNSjvUNA6QVsIqixKJas19fX-YRqoOz68pl2ALVebVsf2dnbT7zqqVlUh6Qk81ICkAh_Mx5PrcR8tXefMjZ8jeGuCeQF1p8q66PKMBb-Okk1jjVTz_WhHy8rBwc_Zi-7Pz-4ml4Pp7OJqMp4OFOOcDRTQkdC60FrgVOdJzgqSC6qkKBKSaxknKgcucs1FTAknKSOSjGI50ljwhKWsFx1t-obY52UYUPZolrYOkRlNY8Yo57yjTjaUssY5Czprwg-kbTOCs25DWZhJ9ruhgLMN_lpW0P7LZjez6ZiKlDD2Db3Gl3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753324447</pqid></control><display><type>article</type><title>A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (rROP) of cyclic ketene acetal (CKA) using both experimental and theoretical approach</title><source>Access via Wiley Online Library</source><creator>Reddy Mothe, Srinivasa ; Tan, Jacqueline S. J. ; Chennamaneni, Lohitha R. ; Aidil, Farhan ; Su, Yi ; Kang, Hway C. ; Lim, Freda C. H. ; Thoniyot, Praveen</creator><creatorcontrib>Reddy Mothe, Srinivasa ; Tan, Jacqueline S. J. ; Chennamaneni, Lohitha R. ; Aidil, Farhan ; Su, Yi ; Kang, Hway C. ; Lim, Freda C. H. ; Thoniyot, Praveen</creatorcontrib><description>ABSTRACT Radical ring‐opening polymerization (rROP) reaction of cyclic ketene acetals (CKA) is an interesting route to biodegradable polymers. Contrary to their tremendous potential, fundamental understanding of their reaction kinetics and thermodynamics is still limited. We present experimental and theoretical investigations for rROP reactions of CKA to systematically elucidate the effects of monomer ring sizes on the homopolymerization. We aim to provide insights on the structural‐reactivity relationship of CKA by studying the thermodynamics and kinetics of the forward ring‐opening propagation reactions and key side reactions, namely ring‐retained propagation and radical back‐biting reaction leading to branching. Experimental results show that for the CKA with smaller ring sizes, significant amount of ring‐retained side products are formed when up to 90% of the monomers are converted. However, for the larger ring sizes (7 and 8 membered), almost complete ring‐opening polymerization with &lt;1% of ring‐retained products are formed. Density functional theory (DFT) calculations show that kinetic effects from the collision frequency dominate in differentiating between ring‐opening propagation, ring‐retained propagation, and backbiting. The results corroborate well with experiments and reports in the literature. Our systematic study from the first principle and experimental validation provide insights into CKA rROP to apply radical polymerization to generate biodegradable polymers. The ring size of the monomer profoundly affects the reactivity and the structure of the polymers. Experiment results show that cyclic ketene acetals (CKA) with smaller ring sizes have a significant amount of ring‐retained side products compared with their counterparts with larger ring sizes. The study reveals clues on the type of monomers and reaction conditions to adopt for introducing degradability in radical polymers.</description><identifier>ISSN: 2642-4150</identifier><identifier>EISSN: 2642-4169</identifier><identifier>DOI: 10.1002/pol.20200210</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Acetals ; Biodegradability ; Collision dynamics ; cyclic ketene acetals ; Density functional theory ; First principles ; Free radical polymerization ; free radical ring‐opening homopolymerization ; Free radicals ; kinetic study ; Monomers ; Polymerization ; Polymers ; Propagation ; Reaction kinetics ; Ring opening polymerization ; ring size effect ; Size effects ; Thermodynamics</subject><ispartof>Journal of polymer science (2020), 2020-06, Vol.58 (12), p.1728-1738</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3443-ce289ffdff907fb6b3d1b92ca9d61bfa56cbe49bf4952141731a185a8f0946373</citedby><cites>FETCH-LOGICAL-c3443-ce289ffdff907fb6b3d1b92ca9d61bfa56cbe49bf4952141731a185a8f0946373</cites><orcidid>0000-0001-5062-1831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpol.20200210$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpol.20200210$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Reddy Mothe, Srinivasa</creatorcontrib><creatorcontrib>Tan, Jacqueline S. J.</creatorcontrib><creatorcontrib>Chennamaneni, Lohitha R.</creatorcontrib><creatorcontrib>Aidil, Farhan</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Kang, Hway C.</creatorcontrib><creatorcontrib>Lim, Freda C. H.</creatorcontrib><creatorcontrib>Thoniyot, Praveen</creatorcontrib><title>A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (rROP) of cyclic ketene acetal (CKA) using both experimental and theoretical approach</title><title>Journal of polymer science (2020)</title><description>ABSTRACT Radical ring‐opening polymerization (rROP) reaction of cyclic ketene acetals (CKA) is an interesting route to biodegradable polymers. Contrary to their tremendous potential, fundamental understanding of their reaction kinetics and thermodynamics is still limited. We present experimental and theoretical investigations for rROP reactions of CKA to systematically elucidate the effects of monomer ring sizes on the homopolymerization. We aim to provide insights on the structural‐reactivity relationship of CKA by studying the thermodynamics and kinetics of the forward ring‐opening propagation reactions and key side reactions, namely ring‐retained propagation and radical back‐biting reaction leading to branching. Experimental results show that for the CKA with smaller ring sizes, significant amount of ring‐retained side products are formed when up to 90% of the monomers are converted. However, for the larger ring sizes (7 and 8 membered), almost complete ring‐opening polymerization with &lt;1% of ring‐retained products are formed. Density functional theory (DFT) calculations show that kinetic effects from the collision frequency dominate in differentiating between ring‐opening propagation, ring‐retained propagation, and backbiting. The results corroborate well with experiments and reports in the literature. Our systematic study from the first principle and experimental validation provide insights into CKA rROP to apply radical polymerization to generate biodegradable polymers. The ring size of the monomer profoundly affects the reactivity and the structure of the polymers. Experiment results show that cyclic ketene acetals (CKA) with smaller ring sizes have a significant amount of ring‐retained side products compared with their counterparts with larger ring sizes. The study reveals clues on the type of monomers and reaction conditions to adopt for introducing degradability in radical polymers.</description><subject>Acetals</subject><subject>Biodegradability</subject><subject>Collision dynamics</subject><subject>cyclic ketene acetals</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Free radical polymerization</subject><subject>free radical ring‐opening homopolymerization</subject><subject>Free radicals</subject><subject>kinetic study</subject><subject>Monomers</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Propagation</subject><subject>Reaction kinetics</subject><subject>Ring opening polymerization</subject><subject>ring size effect</subject><subject>Size effects</subject><subject>Thermodynamics</subject><issn>2642-4150</issn><issn>2642-4169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1OwzAQhSMEEqiw4wCW2FCJFv8lqZdVxZ-oVIRgHTnOmAbSONgukK44AvfhNpwEpwWWrDzW-948eyaKDgkeEozpaWOqIcU0lARvRXs04XTASSK2_-oY70YHzj3iwLA44TjZiz7HyLXOw0L6UqGyfgHny4dwMTUyGvk5IFvWD8iVK0CgNSjvUNA6QVsIqixKJas19fX-YRqoOz68pl2ALVebVsf2dnbT7zqqVlUh6Qk81ICkAh_Mx5PrcR8tXefMjZ8jeGuCeQF1p8q66PKMBb-Okk1jjVTz_WhHy8rBwc_Zi-7Pz-4ml4Pp7OJqMp4OFOOcDRTQkdC60FrgVOdJzgqSC6qkKBKSaxknKgcucs1FTAknKSOSjGI50ljwhKWsFx1t-obY52UYUPZolrYOkRlNY8Yo57yjTjaUssY5Czprwg-kbTOCs25DWZhJ9ruhgLMN_lpW0P7LZjez6ZiKlDD2Db3Gl3o</recordid><startdate>20200615</startdate><enddate>20200615</enddate><creator>Reddy Mothe, Srinivasa</creator><creator>Tan, Jacqueline S. J.</creator><creator>Chennamaneni, Lohitha R.</creator><creator>Aidil, Farhan</creator><creator>Su, Yi</creator><creator>Kang, Hway C.</creator><creator>Lim, Freda C. H.</creator><creator>Thoniyot, Praveen</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5062-1831</orcidid></search><sort><creationdate>20200615</creationdate><title>A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (rROP) of cyclic ketene acetal (CKA) using both experimental and theoretical approach</title><author>Reddy Mothe, Srinivasa ; Tan, Jacqueline S. J. ; Chennamaneni, Lohitha R. ; Aidil, Farhan ; Su, Yi ; Kang, Hway C. ; Lim, Freda C. H. ; Thoniyot, Praveen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3443-ce289ffdff907fb6b3d1b92ca9d61bfa56cbe49bf4952141731a185a8f0946373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetals</topic><topic>Biodegradability</topic><topic>Collision dynamics</topic><topic>cyclic ketene acetals</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Free radical polymerization</topic><topic>free radical ring‐opening homopolymerization</topic><topic>Free radicals</topic><topic>kinetic study</topic><topic>Monomers</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Propagation</topic><topic>Reaction kinetics</topic><topic>Ring opening polymerization</topic><topic>ring size effect</topic><topic>Size effects</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy Mothe, Srinivasa</creatorcontrib><creatorcontrib>Tan, Jacqueline S. J.</creatorcontrib><creatorcontrib>Chennamaneni, Lohitha R.</creatorcontrib><creatorcontrib>Aidil, Farhan</creatorcontrib><creatorcontrib>Su, Yi</creatorcontrib><creatorcontrib>Kang, Hway C.</creatorcontrib><creatorcontrib>Lim, Freda C. H.</creatorcontrib><creatorcontrib>Thoniyot, Praveen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of polymer science (2020)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy Mothe, Srinivasa</au><au>Tan, Jacqueline S. J.</au><au>Chennamaneni, Lohitha R.</au><au>Aidil, Farhan</au><au>Su, Yi</au><au>Kang, Hway C.</au><au>Lim, Freda C. H.</au><au>Thoniyot, Praveen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (rROP) of cyclic ketene acetal (CKA) using both experimental and theoretical approach</atitle><jtitle>Journal of polymer science (2020)</jtitle><date>2020-06-15</date><risdate>2020</risdate><volume>58</volume><issue>12</issue><spage>1728</spage><epage>1738</epage><pages>1728-1738</pages><issn>2642-4150</issn><eissn>2642-4169</eissn><abstract>ABSTRACT Radical ring‐opening polymerization (rROP) reaction of cyclic ketene acetals (CKA) is an interesting route to biodegradable polymers. Contrary to their tremendous potential, fundamental understanding of their reaction kinetics and thermodynamics is still limited. We present experimental and theoretical investigations for rROP reactions of CKA to systematically elucidate the effects of monomer ring sizes on the homopolymerization. We aim to provide insights on the structural‐reactivity relationship of CKA by studying the thermodynamics and kinetics of the forward ring‐opening propagation reactions and key side reactions, namely ring‐retained propagation and radical back‐biting reaction leading to branching. Experimental results show that for the CKA with smaller ring sizes, significant amount of ring‐retained side products are formed when up to 90% of the monomers are converted. However, for the larger ring sizes (7 and 8 membered), almost complete ring‐opening polymerization with &lt;1% of ring‐retained products are formed. Density functional theory (DFT) calculations show that kinetic effects from the collision frequency dominate in differentiating between ring‐opening propagation, ring‐retained propagation, and backbiting. The results corroborate well with experiments and reports in the literature. Our systematic study from the first principle and experimental validation provide insights into CKA rROP to apply radical polymerization to generate biodegradable polymers. The ring size of the monomer profoundly affects the reactivity and the structure of the polymers. Experiment results show that cyclic ketene acetals (CKA) with smaller ring sizes have a significant amount of ring‐retained side products compared with their counterparts with larger ring sizes. The study reveals clues on the type of monomers and reaction conditions to adopt for introducing degradability in radical polymers.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pol.20200210</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5062-1831</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2642-4150
ispartof Journal of polymer science (2020), 2020-06, Vol.58 (12), p.1728-1738
issn 2642-4150
2642-4169
language eng
recordid cdi_proquest_journals_2753324447
source Access via Wiley Online Library
subjects Acetals
Biodegradability
Collision dynamics
cyclic ketene acetals
Density functional theory
First principles
Free radical polymerization
free radical ring‐opening homopolymerization
Free radicals
kinetic study
Monomers
Polymerization
Polymers
Propagation
Reaction kinetics
Ring opening polymerization
ring size effect
Size effects
Thermodynamics
title A systematic investigation of the ring size effects on the free radical ring‐opening polymerization (rROP) of cyclic ketene acetal (CKA) using both experimental and theoretical approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A13%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20investigation%20of%20the%20ring%20size%20effects%20on%20the%20free%20radical%20ring%E2%80%90opening%20polymerization%20(rROP)%20of%20cyclic%20ketene%20acetal%20(CKA)%20using%20both%20experimental%20and%20theoretical%20approach&rft.jtitle=Journal%20of%20polymer%20science%20(2020)&rft.au=Reddy%20Mothe,%20Srinivasa&rft.date=2020-06-15&rft.volume=58&rft.issue=12&rft.spage=1728&rft.epage=1738&rft.pages=1728-1738&rft.issn=2642-4150&rft.eissn=2642-4169&rft_id=info:doi/10.1002/pol.20200210&rft_dat=%3Cproquest_cross%3E2753324447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753324447&rft_id=info:pmid/&rfr_iscdi=true