Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles

Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer-aided civil and infrastructure engineering 2022-12, Vol.37 (15), p.2070-2092
Hauptverfasser: Zhang, Zhao, Guo, Mengdi, Fu, Daocheng, Mo, Lei, Zhang, Siyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2092
container_issue 15
container_start_page 2070
container_title Computer-aided civil and infrastructure engineering
container_volume 37
creator Zhang, Zhao
Guo, Mengdi
Fu, Daocheng
Mo, Lei
Zhang, Siyao
description Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.
doi_str_mv 10.1111/mice.12897
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753258045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753258045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqVw4QkscUNK8U_iJEdUFahUxKWcLcdZgysnDnbaqjw9bgNX9jIr7Ter3UmSW4JnJNZDaxTMCC2r4iyZkIwXacl5cR57XLG04mVxmVyFsMGxsoxNEr_2UmujUDAfnbTI9YNpzbccjOuQdh710g9GWntArg7gd7K2gIY_0yEM0CLZNci6Peqhgzg6eaMAchop13WgBmjQDj6NshCukwstbYCbX50m70-L9fwlXb09L-ePq1RRRuLhBQVKGcdAeBMfKjjorCyYJrmWNWgMNecqr0HqDKsqx3VZybyWSlaNYkDZNLkb9_befW0hDGLjtj4-GQQtckbzEmd5pO5HSnkXggctem9a6Q-CYHHMVBwzFadMI0xGeG8sHP4hxetyvhg9PyZtfGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753258045</pqid></control><display><type>article</type><title>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</title><source>Wiley Journals</source><creator>Zhang, Zhao ; Guo, Mengdi ; Fu, Daocheng ; Mo, Lei ; Zhang, Siyao</creator><creatorcontrib>Zhang, Zhao ; Guo, Mengdi ; Fu, Daocheng ; Mo, Lei ; Zhang, Siyao</creatorcontrib><description>Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12897</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Deduction ; Observability (systems) ; Optimization ; Optimization models ; Penetration ; Signal processing ; State estimation ; Traffic control ; Traffic information ; Traffic signals ; Traffic volume ; Transportation systems</subject><ispartof>Computer-aided civil and infrastructure engineering, 2022-12, Vol.37 (15), p.2070-2092</ispartof><rights>2022  .</rights><rights>2022 Computer-Aided Civil and Infrastructure Engineering.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</citedby><cites>FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12897$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12897$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Guo, Mengdi</creatorcontrib><creatorcontrib>Fu, Daocheng</creatorcontrib><creatorcontrib>Mo, Lei</creatorcontrib><creatorcontrib>Zhang, Siyao</creatorcontrib><title>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</title><title>Computer-aided civil and infrastructure engineering</title><description>Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.</description><subject>Deduction</subject><subject>Observability (systems)</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Penetration</subject><subject>Signal processing</subject><subject>State estimation</subject><subject>Traffic control</subject><subject>Traffic information</subject><subject>Traffic signals</subject><subject>Traffic volume</subject><subject>Transportation systems</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhCMEEqVw4QkscUNK8U_iJEdUFahUxKWcLcdZgysnDnbaqjw9bgNX9jIr7Ter3UmSW4JnJNZDaxTMCC2r4iyZkIwXacl5cR57XLG04mVxmVyFsMGxsoxNEr_2UmujUDAfnbTI9YNpzbccjOuQdh710g9GWntArg7gd7K2gIY_0yEM0CLZNci6Peqhgzg6eaMAchop13WgBmjQDj6NshCukwstbYCbX50m70-L9fwlXb09L-ePq1RRRuLhBQVKGcdAeBMfKjjorCyYJrmWNWgMNecqr0HqDKsqx3VZybyWSlaNYkDZNLkb9_befW0hDGLjtj4-GQQtckbzEmd5pO5HSnkXggctem9a6Q-CYHHMVBwzFadMI0xGeG8sHP4hxetyvhg9PyZtfGo</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhang, Zhao</creator><creator>Guo, Mengdi</creator><creator>Fu, Daocheng</creator><creator>Mo, Lei</creator><creator>Zhang, Siyao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202212</creationdate><title>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</title><author>Zhang, Zhao ; Guo, Mengdi ; Fu, Daocheng ; Mo, Lei ; Zhang, Siyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deduction</topic><topic>Observability (systems)</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Penetration</topic><topic>Signal processing</topic><topic>State estimation</topic><topic>Traffic control</topic><topic>Traffic information</topic><topic>Traffic signals</topic><topic>Traffic volume</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Guo, Mengdi</creatorcontrib><creatorcontrib>Fu, Daocheng</creatorcontrib><creatorcontrib>Mo, Lei</creatorcontrib><creatorcontrib>Zhang, Siyao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhao</au><au>Guo, Mengdi</au><au>Fu, Daocheng</au><au>Mo, Lei</au><au>Zhang, Siyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2022-12</date><risdate>2022</risdate><volume>37</volume><issue>15</issue><spage>2070</spage><epage>2092</epage><pages>2070-2092</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12897</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1093-9687
ispartof Computer-aided civil and infrastructure engineering, 2022-12, Vol.37 (15), p.2070-2092
issn 1093-9687
1467-8667
language eng
recordid cdi_proquest_journals_2753258045
source Wiley Journals
subjects Deduction
Observability (systems)
Optimization
Optimization models
Penetration
Signal processing
State estimation
Traffic control
Traffic information
Traffic signals
Traffic volume
Transportation systems
title Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20signal%20optimization%20for%20partially%20observable%20traffic%20system%20and%20low%20penetration%20rate%20of%20connected%20vehicles&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Zhang,%20Zhao&rft.date=2022-12&rft.volume=37&rft.issue=15&rft.spage=2070&rft.epage=2092&rft.pages=2070-2092&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12897&rft_dat=%3Cproquest_cross%3E2753258045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753258045&rft_id=info:pmid/&rfr_iscdi=true