Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles
Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetrati...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2022-12, Vol.37 (15), p.2070-2092 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2092 |
---|---|
container_issue | 15 |
container_start_page | 2070 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 37 |
creator | Zhang, Zhao Guo, Mengdi Fu, Daocheng Mo, Lei Zhang, Siyao |
description | Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies. |
doi_str_mv | 10.1111/mice.12897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2753258045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753258045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqVw4QkscUNK8U_iJEdUFahUxKWcLcdZgysnDnbaqjw9bgNX9jIr7Ter3UmSW4JnJNZDaxTMCC2r4iyZkIwXacl5cR57XLG04mVxmVyFsMGxsoxNEr_2UmujUDAfnbTI9YNpzbccjOuQdh710g9GWntArg7gd7K2gIY_0yEM0CLZNci6Peqhgzg6eaMAchop13WgBmjQDj6NshCukwstbYCbX50m70-L9fwlXb09L-ePq1RRRuLhBQVKGcdAeBMfKjjorCyYJrmWNWgMNecqr0HqDKsqx3VZybyWSlaNYkDZNLkb9_befW0hDGLjtj4-GQQtckbzEmd5pO5HSnkXggctem9a6Q-CYHHMVBwzFadMI0xGeG8sHP4hxetyvhg9PyZtfGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753258045</pqid></control><display><type>article</type><title>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</title><source>Wiley Journals</source><creator>Zhang, Zhao ; Guo, Mengdi ; Fu, Daocheng ; Mo, Lei ; Zhang, Siyao</creator><creatorcontrib>Zhang, Zhao ; Guo, Mengdi ; Fu, Daocheng ; Mo, Lei ; Zhang, Siyao</creatorcontrib><description>Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.12897</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Deduction ; Observability (systems) ; Optimization ; Optimization models ; Penetration ; Signal processing ; State estimation ; Traffic control ; Traffic information ; Traffic signals ; Traffic volume ; Transportation systems</subject><ispartof>Computer-aided civil and infrastructure engineering, 2022-12, Vol.37 (15), p.2070-2092</ispartof><rights>2022 .</rights><rights>2022 Computer-Aided Civil and Infrastructure Engineering.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</citedby><cites>FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.12897$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.12897$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Guo, Mengdi</creatorcontrib><creatorcontrib>Fu, Daocheng</creatorcontrib><creatorcontrib>Mo, Lei</creatorcontrib><creatorcontrib>Zhang, Siyao</creatorcontrib><title>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</title><title>Computer-aided civil and infrastructure engineering</title><description>Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.</description><subject>Deduction</subject><subject>Observability (systems)</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Penetration</subject><subject>Signal processing</subject><subject>State estimation</subject><subject>Traffic control</subject><subject>Traffic information</subject><subject>Traffic signals</subject><subject>Traffic volume</subject><subject>Transportation systems</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhCMEEqVw4QkscUNK8U_iJEdUFahUxKWcLcdZgysnDnbaqjw9bgNX9jIr7Ter3UmSW4JnJNZDaxTMCC2r4iyZkIwXacl5cR57XLG04mVxmVyFsMGxsoxNEr_2UmujUDAfnbTI9YNpzbccjOuQdh710g9GWntArg7gd7K2gIY_0yEM0CLZNci6Peqhgzg6eaMAchop13WgBmjQDj6NshCukwstbYCbX50m70-L9fwlXb09L-ePq1RRRuLhBQVKGcdAeBMfKjjorCyYJrmWNWgMNecqr0HqDKsqx3VZybyWSlaNYkDZNLkb9_befW0hDGLjtj4-GQQtckbzEmd5pO5HSnkXggctem9a6Q-CYHHMVBwzFadMI0xGeG8sHP4hxetyvhg9PyZtfGo</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhang, Zhao</creator><creator>Guo, Mengdi</creator><creator>Fu, Daocheng</creator><creator>Mo, Lei</creator><creator>Zhang, Siyao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202212</creationdate><title>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</title><author>Zhang, Zhao ; Guo, Mengdi ; Fu, Daocheng ; Mo, Lei ; Zhang, Siyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2317-872e22360e16d89776ef4873f15fabef0eb66c5beaf40c950b89a5baca9dc3e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deduction</topic><topic>Observability (systems)</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Penetration</topic><topic>Signal processing</topic><topic>State estimation</topic><topic>Traffic control</topic><topic>Traffic information</topic><topic>Traffic signals</topic><topic>Traffic volume</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Guo, Mengdi</creatorcontrib><creatorcontrib>Fu, Daocheng</creatorcontrib><creatorcontrib>Mo, Lei</creatorcontrib><creatorcontrib>Zhang, Siyao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhao</au><au>Guo, Mengdi</au><au>Fu, Daocheng</au><au>Mo, Lei</au><au>Zhang, Siyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2022-12</date><risdate>2022</risdate><volume>37</volume><issue>15</issue><spage>2070</spage><epage>2092</epage><pages>2070-2092</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>Observability and controllability are two critical requirements for a partially observable transportation system. This paper proposes a stepwise signal optimization framework with connected vehicle (CV) data as input to solve both challenges. First, a Bayesian deduction method based on low‐penetration CV data is established to estimate the traffic volume. Thereafter, an offline signal optimization model is constructed to simultaneously optimize the flexible lane settings and signal timings, which are set as the prior information for the third step. In the third step, an online deep recurrent Q‐learning (DRQN) signal optimization model dynamically adjusts signal settings based on real‐time traffic information. Numerical experiments demonstrate that the model outperforms the actuated control, the online DQRN model without offline filter, and the back‐pressure model by 9%–66% and 7%–29% in two networks. This study innovatively combines traffic state estimation and traffic signal control as an integrated process. It contributes to an improved understanding of traffic control in a CV environment and lays a solid foundation for future traffic control strategies.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.12897</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2022-12, Vol.37 (15), p.2070-2092 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_2753258045 |
source | Wiley Journals |
subjects | Deduction Observability (systems) Optimization Optimization models Penetration Signal processing State estimation Traffic control Traffic information Traffic signals Traffic volume Transportation systems |
title | Traffic signal optimization for partially observable traffic system and low penetration rate of connected vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traffic%20signal%20optimization%20for%20partially%20observable%20traffic%20system%20and%20low%20penetration%20rate%20of%20connected%20vehicles&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Zhang,%20Zhao&rft.date=2022-12&rft.volume=37&rft.issue=15&rft.spage=2070&rft.epage=2092&rft.pages=2070-2092&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.12897&rft_dat=%3Cproquest_cross%3E2753258045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753258045&rft_id=info:pmid/&rfr_iscdi=true |