Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases

Seven lipases were screened for their ability to synthesize DAG in the glycerolysis of rapeseed oil. In batch reactions with free glycerol, the lipase carrier was of great importance for catalysis. Catalysis did not take place in reactions with lipases having hydrophilic carriers. The best DAG yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2005-05, Vol.82 (5), p.329-334
Hauptverfasser: Kristensen, J.B, Xu, X, Mu, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 5
container_start_page 329
container_title Journal of the American Oil Chemists' Society
container_volume 82
creator Kristensen, J.B
Xu, X
Mu, H
description Seven lipases were screened for their ability to synthesize DAG in the glycerolysis of rapeseed oil. In batch reactions with free glycerol, the lipase carrier was of great importance for catalysis. Catalysis did not take place in reactions with lipases having hydrophilic carriers. The best DAG yield (approx. 60 wt%) was achieved with Novozym 435 and Lipase PS‐D after 7 h, and an equilibrium was obtained. Stepwise addition of glycerol allowed catalysis with Novozym CALB L (immobilized) to take place in spite of the hydrophilic carrier; however, the DAG yield was only 19 wt%. This result suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS‐D, Lipase AK, and Lipase F‐AP15 than in reactions with free glycerol, but the DAG yield remained approximately 60–65 wt%. Nonspecific lipases yielded more 1,3‐DAG early in the reaction.
doi_str_mv 10.1007/s11746-005-1074-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_275082080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>870504231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4409-6f1a3fce7ee9dd89fde4f3fcec425d7e1bc5a39405e1177623298bf22a8a469f3</originalsourceid><addsrcrecordid>eNqFUE1vEzEQtRBIhMIP4ISFxHHL-GvXy61KgSJV6qFU4mZNnHFw5ewGOwWZX4-jLeLIaTTzPkbvMfZawLkAGN4XIQbddwCmEzDozjxhK2GM7UalxFO2AgDVgRTfnrMXpdy31SppVsxdRvQ17VL1lOfES52O36nEwjeV0_S77vEYPf-L14Z84MVnoilOOz4H7uf9nrKPmFLl-BNjwk0inuIBC5WX7FnAVOjV4zxjd58-fl1fddc3n7-sL647rzWMXR8EquBpIBq3WzuGLelwOngtzXYgsfEG1ajBUAs69FLJ0W6ClGhR92NQZ-zt4nvI848HKkd3Pz_kqb10cjBgJVhoJLGQfJ5LyRTcIcc95uoEuFONbqnRtRrdqUZnmubdozEWjylknHws_4T9aKQ0ovGGhfcrJqr_N3YXN-tbaDGa8s2iDDg73OXmfncrQSgQoK21Uv0BiFeONA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>275082080</pqid></control><display><type>article</type><title>Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases</title><source>Access via Wiley Online Library</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kristensen, J.B ; Xu, X ; Mu, H</creator><creatorcontrib>Kristensen, J.B ; Xu, X ; Mu, H</creatorcontrib><description>Seven lipases were screened for their ability to synthesize DAG in the glycerolysis of rapeseed oil. In batch reactions with free glycerol, the lipase carrier was of great importance for catalysis. Catalysis did not take place in reactions with lipases having hydrophilic carriers. The best DAG yield (approx. 60 wt%) was achieved with Novozym 435 and Lipase PS‐D after 7 h, and an equilibrium was obtained. Stepwise addition of glycerol allowed catalysis with Novozym CALB L (immobilized) to take place in spite of the hydrophilic carrier; however, the DAG yield was only 19 wt%. This result suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS‐D, Lipase AK, and Lipase F‐AP15 than in reactions with free glycerol, but the DAG yield remained approximately 60–65 wt%. Nonspecific lipases yielded more 1,3‐DAG early in the reaction.</description><identifier>ISSN: 0003-021X</identifier><identifier>EISSN: 1558-9331</identifier><identifier>DOI: 10.1007/s11746-005-1074-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer‐Verlag</publisher><subject>Alcohol ; Bioconversions. Hemisynthesis ; Biological and medical sciences ; Biotechnology ; Catalysis ; Diacylglycerol ; diacylglycerols ; emulsifiers ; Enzymes ; Fat industries ; Food ; Food industries ; Fundamental and applied biological sciences. Psychology ; glycerol ; glycerolysis ; lipase carrier ; lipases ; Methods. Procedures. Technologies ; Oils &amp; fats ; Rapeseed oil ; Silica ; silica gel ; specificity of lipases ; triacylglycerol lipase</subject><ispartof>Journal of the American Oil Chemists' Society, 2005-05, Vol.82 (5), p.329-334</ispartof><rights>2005 American Oil Chemists' Society (AOCS)</rights><rights>2005 INIST-CNRS</rights><rights>Copyright AOCS Press May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4409-6f1a3fce7ee9dd89fde4f3fcec425d7e1bc5a39405e1177623298bf22a8a469f3</citedby><cites>FETCH-LOGICAL-c4409-6f1a3fce7ee9dd89fde4f3fcec425d7e1bc5a39405e1177623298bf22a8a469f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs11746-005-1074-5$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs11746-005-1074-5$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16952251$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kristensen, J.B</creatorcontrib><creatorcontrib>Xu, X</creatorcontrib><creatorcontrib>Mu, H</creatorcontrib><title>Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases</title><title>Journal of the American Oil Chemists' Society</title><description>Seven lipases were screened for their ability to synthesize DAG in the glycerolysis of rapeseed oil. In batch reactions with free glycerol, the lipase carrier was of great importance for catalysis. Catalysis did not take place in reactions with lipases having hydrophilic carriers. The best DAG yield (approx. 60 wt%) was achieved with Novozym 435 and Lipase PS‐D after 7 h, and an equilibrium was obtained. Stepwise addition of glycerol allowed catalysis with Novozym CALB L (immobilized) to take place in spite of the hydrophilic carrier; however, the DAG yield was only 19 wt%. This result suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS‐D, Lipase AK, and Lipase F‐AP15 than in reactions with free glycerol, but the DAG yield remained approximately 60–65 wt%. Nonspecific lipases yielded more 1,3‐DAG early in the reaction.</description><subject>Alcohol</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Diacylglycerol</subject><subject>diacylglycerols</subject><subject>emulsifiers</subject><subject>Enzymes</subject><subject>Fat industries</subject><subject>Food</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glycerol</subject><subject>glycerolysis</subject><subject>lipase carrier</subject><subject>lipases</subject><subject>Methods. Procedures. Technologies</subject><subject>Oils &amp; fats</subject><subject>Rapeseed oil</subject><subject>Silica</subject><subject>silica gel</subject><subject>specificity of lipases</subject><subject>triacylglycerol lipase</subject><issn>0003-021X</issn><issn>1558-9331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUE1vEzEQtRBIhMIP4ISFxHHL-GvXy61KgSJV6qFU4mZNnHFw5ewGOwWZX4-jLeLIaTTzPkbvMfZawLkAGN4XIQbddwCmEzDozjxhK2GM7UalxFO2AgDVgRTfnrMXpdy31SppVsxdRvQ17VL1lOfES52O36nEwjeV0_S77vEYPf-L14Z84MVnoilOOz4H7uf9nrKPmFLl-BNjwk0inuIBC5WX7FnAVOjV4zxjd58-fl1fddc3n7-sL647rzWMXR8EquBpIBq3WzuGLelwOngtzXYgsfEG1ajBUAs69FLJ0W6ClGhR92NQZ-zt4nvI848HKkd3Pz_kqb10cjBgJVhoJLGQfJ5LyRTcIcc95uoEuFONbqnRtRrdqUZnmubdozEWjylknHws_4T9aKQ0ovGGhfcrJqr_N3YXN-tbaDGa8s2iDDg73OXmfncrQSgQoK21Uv0BiFeONA</recordid><startdate>200505</startdate><enddate>200505</enddate><creator>Kristensen, J.B</creator><creator>Xu, X</creator><creator>Mu, H</creator><general>Springer‐Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200505</creationdate><title>Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases</title><author>Kristensen, J.B ; Xu, X ; Mu, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4409-6f1a3fce7ee9dd89fde4f3fcec425d7e1bc5a39405e1177623298bf22a8a469f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alcohol</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Diacylglycerol</topic><topic>diacylglycerols</topic><topic>emulsifiers</topic><topic>Enzymes</topic><topic>Fat industries</topic><topic>Food</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glycerol</topic><topic>glycerolysis</topic><topic>lipase carrier</topic><topic>lipases</topic><topic>Methods. Procedures. Technologies</topic><topic>Oils &amp; fats</topic><topic>Rapeseed oil</topic><topic>Silica</topic><topic>silica gel</topic><topic>specificity of lipases</topic><topic>triacylglycerol lipase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristensen, J.B</creatorcontrib><creatorcontrib>Xu, X</creatorcontrib><creatorcontrib>Mu, H</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Oil Chemists' Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristensen, J.B</au><au>Xu, X</au><au>Mu, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases</atitle><jtitle>Journal of the American Oil Chemists' Society</jtitle><date>2005-05</date><risdate>2005</risdate><volume>82</volume><issue>5</issue><spage>329</spage><epage>334</epage><pages>329-334</pages><issn>0003-021X</issn><eissn>1558-9331</eissn><abstract>Seven lipases were screened for their ability to synthesize DAG in the glycerolysis of rapeseed oil. In batch reactions with free glycerol, the lipase carrier was of great importance for catalysis. Catalysis did not take place in reactions with lipases having hydrophilic carriers. The best DAG yield (approx. 60 wt%) was achieved with Novozym 435 and Lipase PS‐D after 7 h, and an equilibrium was obtained. Stepwise addition of glycerol allowed catalysis with Novozym CALB L (immobilized) to take place in spite of the hydrophilic carrier; however, the DAG yield was only 19 wt%. This result suggests that glycerol forms a layer around the hydrophilic lipase particles, limiting contact between the lipases and the hydrophobic oil phase. With glycerol absorbed on silica gel, all lipases catalyzed the glycerolysis reaction. Faster conversion of TAG was obtained with Lipase PS‐D, Lipase AK, and Lipase F‐AP15 than in reactions with free glycerol, but the DAG yield remained approximately 60–65 wt%. Nonspecific lipases yielded more 1,3‐DAG early in the reaction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer‐Verlag</pub><doi>10.1007/s11746-005-1074-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-021X
ispartof Journal of the American Oil Chemists' Society, 2005-05, Vol.82 (5), p.329-334
issn 0003-021X
1558-9331
language eng
recordid cdi_proquest_journals_275082080
source Access via Wiley Online Library; SpringerLink Journals - AutoHoldings
subjects Alcohol
Bioconversions. Hemisynthesis
Biological and medical sciences
Biotechnology
Catalysis
Diacylglycerol
diacylglycerols
emulsifiers
Enzymes
Fat industries
Food
Food industries
Fundamental and applied biological sciences. Psychology
glycerol
glycerolysis
lipase carrier
lipases
Methods. Procedures. Technologies
Oils & fats
Rapeseed oil
Silica
silica gel
specificity of lipases
triacylglycerol lipase
title Diacylglycerol synthesis by enzymatic glycerolysis: screening of commercially available lipases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diacylglycerol%20synthesis%20by%20enzymatic%20glycerolysis:%20screening%20of%20commercially%20available%20lipases&rft.jtitle=Journal%20of%20the%20American%20Oil%20Chemists'%20Society&rft.au=Kristensen,%20J.B&rft.date=2005-05&rft.volume=82&rft.issue=5&rft.spage=329&rft.epage=334&rft.pages=329-334&rft.issn=0003-021X&rft.eissn=1558-9331&rft_id=info:doi/10.1007/s11746-005-1074-5&rft_dat=%3Cproquest_cross%3E870504231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=275082080&rft_id=info:pmid/&rfr_iscdi=true