Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide
Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to...
Gespeichert in:
Veröffentlicht in: | Journal of the American Oil Chemists' Society 2008-02, Vol.85 (2), p.189-196 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | Journal of the American Oil Chemists' Society |
container_volume | 85 |
creator | Lai, Louise L Soheili, Kambiz C Artz, William E |
description | Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81). |
doi_str_mv | 10.1007/s11746-007-1182-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_275056375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426481541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</originalsourceid><addsrcrecordid>eNqFkU9P4zAQxS3ESpSyH4DTRitxDHhsJ06OqPyVQF2pWy03a-JMKqMSg92K9tvjbhDc4OSx9X4zb54ZOwZ-CpzrswigVZmnMgeoRL7ZYyMoiiqvpYR9NuKcy5wLeDhghzE-pmslRTFi_y4IrWtd5yyunO8z32Uzv20I-2zqltk8un6R3dNTE7Cn7E_wluL_N-zbbLZubHCrxC6zCYYm8RfOb1xLR-xHh8tIP9_PMZtfXf6d3OR30-vbyfldbhXoOk9zdKMABdUaUTZ1S7y1XdFUlrBWpZZVBahqbDtNDZFCWYFQCgRZVQqQY_Z76Psc_Mua4so8-nXo00gjdMGLUuoiiWAQ2eBjDNSZ5-CeMGwNcLOLzwzxmV25i89sEnPy3hhjWq9L61sXP0DBOZR1wZNOD7pXt6Tt943N-XQy41DViRQDGRPULyh8Wv_K1q8B6tAbXIRkaT4THGT6UKVSMvINrMWaDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>275056375</pqid></control><display><type>article</type><title>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</title><source>Access via Wiley Online Library</source><source>SpringerNature Journals</source><creator>Lai, Louise L ; Soheili, Kambiz C ; Artz, William E</creator><creatorcontrib>Lai, Louise L ; Soheili, Kambiz C ; Artz, William E</creatorcontrib><description>Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).</description><identifier>ISSN: 0003-021X</identifier><identifier>EISSN: 1558-9331</identifier><identifier>DOI: 10.1007/s11746-007-1182-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>acidification ; Agriculture ; Biological and medical sciences ; Biomaterials ; Biotechnology ; Carbon dioxide ; Chemicals ; Chemistry ; Chemistry and Materials Science ; Fat industries ; Food industries ; Food Science ; Fundamental and applied biological sciences. Psychology ; Industrial Chemistry/Chemical Engineering ; Membrane separation ; Membrane technology ; Membranes ; Oil refining ; Oils & fats ; Original Paper ; Solubility ; Soybean oil ; Soybeans ; supercritical fluid extraction ; Supercritical fluids ; Temperature ; Vegetable oils ; Viscosity</subject><ispartof>Journal of the American Oil Chemists' Society, 2008-02, Vol.85 (2), p.189-196</ispartof><rights>AOCS 2007</rights><rights>2008 American Oil Chemists' Society (AOCS)</rights><rights>2008 INIST-CNRS</rights><rights>Copyright AOCS Press Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</citedby><cites>FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11746-007-1182-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11746-007-1182-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,41488,42557,45574,45575,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20016950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Louise L</creatorcontrib><creatorcontrib>Soheili, Kambiz C</creatorcontrib><creatorcontrib>Artz, William E</creatorcontrib><title>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</title><title>Journal of the American Oil Chemists' Society</title><addtitle>J Am Oil Chem Soc</addtitle><description>Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).</description><subject>acidification</subject><subject>Agriculture</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemicals</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Fat industries</subject><subject>Food industries</subject><subject>Food Science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Membrane separation</subject><subject>Membrane technology</subject><subject>Membranes</subject><subject>Oil refining</subject><subject>Oils & fats</subject><subject>Original Paper</subject><subject>Solubility</subject><subject>Soybean oil</subject><subject>Soybeans</subject><subject>supercritical fluid extraction</subject><subject>Supercritical fluids</subject><subject>Temperature</subject><subject>Vegetable oils</subject><subject>Viscosity</subject><issn>0003-021X</issn><issn>1558-9331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9P4zAQxS3ESpSyH4DTRitxDHhsJ06OqPyVQF2pWy03a-JMKqMSg92K9tvjbhDc4OSx9X4zb54ZOwZ-CpzrswigVZmnMgeoRL7ZYyMoiiqvpYR9NuKcy5wLeDhghzE-pmslRTFi_y4IrWtd5yyunO8z32Uzv20I-2zqltk8un6R3dNTE7Cn7E_wluL_N-zbbLZubHCrxC6zCYYm8RfOb1xLR-xHh8tIP9_PMZtfXf6d3OR30-vbyfldbhXoOk9zdKMABdUaUTZ1S7y1XdFUlrBWpZZVBahqbDtNDZFCWYFQCgRZVQqQY_Z76Psc_Mua4so8-nXo00gjdMGLUuoiiWAQ2eBjDNSZ5-CeMGwNcLOLzwzxmV25i89sEnPy3hhjWq9L61sXP0DBOZR1wZNOD7pXt6Tt943N-XQy41DViRQDGRPULyh8Wv_K1q8B6tAbXIRkaT4THGT6UKVSMvINrMWaDw</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Lai, Louise L</creator><creator>Soheili, Kambiz C</creator><creator>Artz, William E</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200802</creationdate><title>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</title><author>Lai, Louise L ; Soheili, Kambiz C ; Artz, William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>acidification</topic><topic>Agriculture</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemicals</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Fat industries</topic><topic>Food industries</topic><topic>Food Science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Membrane separation</topic><topic>Membrane technology</topic><topic>Membranes</topic><topic>Oil refining</topic><topic>Oils & fats</topic><topic>Original Paper</topic><topic>Solubility</topic><topic>Soybean oil</topic><topic>Soybeans</topic><topic>supercritical fluid extraction</topic><topic>Supercritical fluids</topic><topic>Temperature</topic><topic>Vegetable oils</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Louise L</creatorcontrib><creatorcontrib>Soheili, Kambiz C</creatorcontrib><creatorcontrib>Artz, William E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Oil Chemists' Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Louise L</au><au>Soheili, Kambiz C</au><au>Artz, William E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</atitle><jtitle>Journal of the American Oil Chemists' Society</jtitle><stitle>J Am Oil Chem Soc</stitle><date>2008-02</date><risdate>2008</risdate><volume>85</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>0003-021X</issn><eissn>1558-9331</eissn><abstract>Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s11746-007-1182-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-021X |
ispartof | Journal of the American Oil Chemists' Society, 2008-02, Vol.85 (2), p.189-196 |
issn | 0003-021X 1558-9331 |
language | eng |
recordid | cdi_proquest_journals_275056375 |
source | Access via Wiley Online Library; SpringerNature Journals |
subjects | acidification Agriculture Biological and medical sciences Biomaterials Biotechnology Carbon dioxide Chemicals Chemistry Chemistry and Materials Science Fat industries Food industries Food Science Fundamental and applied biological sciences. Psychology Industrial Chemistry/Chemical Engineering Membrane separation Membrane technology Membranes Oil refining Oils & fats Original Paper Solubility Soybean oil Soybeans supercritical fluid extraction Supercritical fluids Temperature Vegetable oils Viscosity |
title | Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deacidification%20of%20Soybean%20Oil%20Using%20Membrane%20Processing%20and%20Subcritical%20Carbon%20Dioxide&rft.jtitle=Journal%20of%20the%20American%20Oil%20Chemists'%20Society&rft.au=Lai,%20Louise%20L&rft.date=2008-02&rft.volume=85&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=0003-021X&rft.eissn=1558-9331&rft_id=info:doi/10.1007/s11746-007-1182-x&rft_dat=%3Cproquest_cross%3E1426481541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=275056375&rft_id=info:pmid/&rfr_iscdi=true |