Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide

Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2008-02, Vol.85 (2), p.189-196
Hauptverfasser: Lai, Louise L, Soheili, Kambiz C, Artz, William E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 189
container_title Journal of the American Oil Chemists' Society
container_volume 85
creator Lai, Louise L
Soheili, Kambiz C
Artz, William E
description Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).
doi_str_mv 10.1007/s11746-007-1182-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_275056375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426481541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</originalsourceid><addsrcrecordid>eNqFkU9P4zAQxS3ESpSyH4DTRitxDHhsJ06OqPyVQF2pWy03a-JMKqMSg92K9tvjbhDc4OSx9X4zb54ZOwZ-CpzrswigVZmnMgeoRL7ZYyMoiiqvpYR9NuKcy5wLeDhghzE-pmslRTFi_y4IrWtd5yyunO8z32Uzv20I-2zqltk8un6R3dNTE7Cn7E_wluL_N-zbbLZubHCrxC6zCYYm8RfOb1xLR-xHh8tIP9_PMZtfXf6d3OR30-vbyfldbhXoOk9zdKMABdUaUTZ1S7y1XdFUlrBWpZZVBahqbDtNDZFCWYFQCgRZVQqQY_Z76Psc_Mua4so8-nXo00gjdMGLUuoiiWAQ2eBjDNSZ5-CeMGwNcLOLzwzxmV25i89sEnPy3hhjWq9L61sXP0DBOZR1wZNOD7pXt6Tt943N-XQy41DViRQDGRPULyh8Wv_K1q8B6tAbXIRkaT4THGT6UKVSMvINrMWaDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>275056375</pqid></control><display><type>article</type><title>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</title><source>Access via Wiley Online Library</source><source>SpringerNature Journals</source><creator>Lai, Louise L ; Soheili, Kambiz C ; Artz, William E</creator><creatorcontrib>Lai, Louise L ; Soheili, Kambiz C ; Artz, William E</creatorcontrib><description>Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).</description><identifier>ISSN: 0003-021X</identifier><identifier>EISSN: 1558-9331</identifier><identifier>DOI: 10.1007/s11746-007-1182-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>acidification ; Agriculture ; Biological and medical sciences ; Biomaterials ; Biotechnology ; Carbon dioxide ; Chemicals ; Chemistry ; Chemistry and Materials Science ; Fat industries ; Food industries ; Food Science ; Fundamental and applied biological sciences. Psychology ; Industrial Chemistry/Chemical Engineering ; Membrane separation ; Membrane technology ; Membranes ; Oil refining ; Oils &amp; fats ; Original Paper ; Solubility ; Soybean oil ; Soybeans ; supercritical fluid extraction ; Supercritical fluids ; Temperature ; Vegetable oils ; Viscosity</subject><ispartof>Journal of the American Oil Chemists' Society, 2008-02, Vol.85 (2), p.189-196</ispartof><rights>AOCS 2007</rights><rights>2008 American Oil Chemists' Society (AOCS)</rights><rights>2008 INIST-CNRS</rights><rights>Copyright AOCS Press Feb 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</citedby><cites>FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11746-007-1182-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11746-007-1182-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,41488,42557,45574,45575,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20016950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Louise L</creatorcontrib><creatorcontrib>Soheili, Kambiz C</creatorcontrib><creatorcontrib>Artz, William E</creatorcontrib><title>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</title><title>Journal of the American Oil Chemists' Society</title><addtitle>J Am Oil Chem Soc</addtitle><description>Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).</description><subject>acidification</subject><subject>Agriculture</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemicals</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Fat industries</subject><subject>Food industries</subject><subject>Food Science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Membrane separation</subject><subject>Membrane technology</subject><subject>Membranes</subject><subject>Oil refining</subject><subject>Oils &amp; fats</subject><subject>Original Paper</subject><subject>Solubility</subject><subject>Soybean oil</subject><subject>Soybeans</subject><subject>supercritical fluid extraction</subject><subject>Supercritical fluids</subject><subject>Temperature</subject><subject>Vegetable oils</subject><subject>Viscosity</subject><issn>0003-021X</issn><issn>1558-9331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9P4zAQxS3ESpSyH4DTRitxDHhsJ06OqPyVQF2pWy03a-JMKqMSg92K9tvjbhDc4OSx9X4zb54ZOwZ-CpzrswigVZmnMgeoRL7ZYyMoiiqvpYR9NuKcy5wLeDhghzE-pmslRTFi_y4IrWtd5yyunO8z32Uzv20I-2zqltk8un6R3dNTE7Cn7E_wluL_N-zbbLZubHCrxC6zCYYm8RfOb1xLR-xHh8tIP9_PMZtfXf6d3OR30-vbyfldbhXoOk9zdKMABdUaUTZ1S7y1XdFUlrBWpZZVBahqbDtNDZFCWYFQCgRZVQqQY_Z76Psc_Mua4so8-nXo00gjdMGLUuoiiWAQ2eBjDNSZ5-CeMGwNcLOLzwzxmV25i89sEnPy3hhjWq9L61sXP0DBOZR1wZNOD7pXt6Tt943N-XQy41DViRQDGRPULyh8Wv_K1q8B6tAbXIRkaT4THGT6UKVSMvINrMWaDw</recordid><startdate>200802</startdate><enddate>200802</enddate><creator>Lai, Louise L</creator><creator>Soheili, Kambiz C</creator><creator>Artz, William E</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200802</creationdate><title>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</title><author>Lai, Louise L ; Soheili, Kambiz C ; Artz, William E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4179-bea7b41a2e97aa3b9de0dcf5b8cea94673881a49adf7ebee4a38124412ec46213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>acidification</topic><topic>Agriculture</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemicals</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Fat industries</topic><topic>Food industries</topic><topic>Food Science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Membrane separation</topic><topic>Membrane technology</topic><topic>Membranes</topic><topic>Oil refining</topic><topic>Oils &amp; fats</topic><topic>Original Paper</topic><topic>Solubility</topic><topic>Soybean oil</topic><topic>Soybeans</topic><topic>supercritical fluid extraction</topic><topic>Supercritical fluids</topic><topic>Temperature</topic><topic>Vegetable oils</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Louise L</creatorcontrib><creatorcontrib>Soheili, Kambiz C</creatorcontrib><creatorcontrib>Artz, William E</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the American Oil Chemists' Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Louise L</au><au>Soheili, Kambiz C</au><au>Artz, William E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide</atitle><jtitle>Journal of the American Oil Chemists' Society</jtitle><stitle>J Am Oil Chem Soc</stitle><date>2008-02</date><risdate>2008</risdate><volume>85</volume><issue>2</issue><spage>189</spage><epage>196</epage><pages>189-196</pages><issn>0003-021X</issn><eissn>1558-9331</eissn><abstract>Vegetable oils have been deacidified using supercritical carbon dioxide and membrane processing. However, the pressures required are substantially greater than those used in industry. Therefore, the feasibility of using subcritical carbon dioxide (at much lower pressures) and membrane processing to separate free fatty acids (FFA) from triacylglycerols (TAGs) was examined. First, FFA/TAG solubility tests were completed (10-25 °C and 68-136 atm). The oil samples were separated using a FilmTec NF90 or a FilmTec BW30 membrane in a dead-end type cell. Within the range examined, the greatest solubility for oleic acid was at 25 °C and 136 atm. For soybean oil TAGs, the greatest solubility was at 20 °C and 136 atm. However, for the separation of the two components, 20 °C and 68 atm was best among the condition combinations examined. The solubility of oleic acid ranged from 0.294 to 0.455 mg/mL in subcritical carbon dioxide, while the solubility of triacylglycerols ranged from 0.066 to 0.139 mg/mL. The FilmTec BW30 membrane provided significantly better separation of FFAs from TAGs than did the NF90 membrane. Both membranes were selective for oleic acid, although the BW30 had greater selectivity for oleic acid (β oleic acid = 2.12, β TAGs = 0.24) than the NF90 membrane (β oleic acid = 1.26, β TAGs = 0.81).</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s11746-007-1182-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-021X
ispartof Journal of the American Oil Chemists' Society, 2008-02, Vol.85 (2), p.189-196
issn 0003-021X
1558-9331
language eng
recordid cdi_proquest_journals_275056375
source Access via Wiley Online Library; SpringerNature Journals
subjects acidification
Agriculture
Biological and medical sciences
Biomaterials
Biotechnology
Carbon dioxide
Chemicals
Chemistry
Chemistry and Materials Science
Fat industries
Food industries
Food Science
Fundamental and applied biological sciences. Psychology
Industrial Chemistry/Chemical Engineering
Membrane separation
Membrane technology
Membranes
Oil refining
Oils & fats
Original Paper
Solubility
Soybean oil
Soybeans
supercritical fluid extraction
Supercritical fluids
Temperature
Vegetable oils
Viscosity
title Deacidification of Soybean Oil Using Membrane Processing and Subcritical Carbon Dioxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deacidification%20of%20Soybean%20Oil%20Using%20Membrane%20Processing%20and%20Subcritical%20Carbon%20Dioxide&rft.jtitle=Journal%20of%20the%20American%20Oil%20Chemists'%20Society&rft.au=Lai,%20Louise%20L&rft.date=2008-02&rft.volume=85&rft.issue=2&rft.spage=189&rft.epage=196&rft.pages=189-196&rft.issn=0003-021X&rft.eissn=1558-9331&rft_id=info:doi/10.1007/s11746-007-1182-x&rft_dat=%3Cproquest_cross%3E1426481541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=275056375&rft_id=info:pmid/&rfr_iscdi=true