Wideband mmWave MIMO: One Prior-Aided LAMP-Based Network Combining with Residual Learning for Beamspace Channel Estimation

Existing channel estimation schemes for wideband systems generally estimate the channel matrix by pre-estimating the common support, which has a limited validity owing to the effect of beam squint. It is worth noting that the learned approximate message passing (LAMP) network need not pre-estimate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2022, Vol.2022, p.1-6
Hauptverfasser: Zhu, Chunhua, Ji, Qinwen, Guo, Xinying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title Mobile information systems
container_volume 2022
creator Zhu, Chunhua
Ji, Qinwen
Guo, Xinying
description Existing channel estimation schemes for wideband systems generally estimate the channel matrix by pre-estimating the common support, which has a limited validity owing to the effect of beam squint. It is worth noting that the learned approximate message passing (LAMP) network need not pre-estimate the support and has obtained a relatively reliable estimation quality in the narrowband systems. In order to degrade the performance penalty caused by inaccurate estimation of the support in the wideband millimeter-wave MIMO systems, a prior-aided Gaussian mixture LAMP (GM-LAMP) network combining with residual learning is presented. Specifically, the multicarrier Gaussian mixture threshold shrinkage function is constructed for the GM-LAMP network, which can directly estimate the wideband beamspace channel while avoiding pre-estimating the support; then, considering the impact of channel noise and the coarse estimation error by the GM-LAMP, a residual network (ResNet) is designed to improve the estimation performance. Simulation results validate the efficiency of the proposed network (referred to as GLAMP-ResNet) with the lower computational complexity compared with the existing schemes.
doi_str_mv 10.1155/2022/7301273
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2749275035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749275035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2093-e6078addaf449aca9d0012d00acfd36a78085fa575eba27b31606ad19082f68f3</originalsourceid><addsrcrecordid>eNp9kFFPwjAQxxejiYi--QGa-KiTtlvXzTdcUEmGEKOBt-VYWymyDtsh0U9vEZ59ubvc_XJ3_38QXBJ8SwhjPYop7fEIE8qjo6BDUs7CDLPZsa8Zj0NM-Ow0OHNuiXGCI8Y7wc9UCzkHI1BdT-FLotFwNL5DYyPRxOrGhn0_F6jojybhPThfPst229gPlDf1XBtt3tFWtwv0Ip0WG1ihQoL9a6vGonsJtVtDJVG-AGPkCg1cq2todWPOgxMFKycvDrkbvD0MXvOnsBg_DvN-EVYUZ1EoE8xTEAJUHGdQQSawF-gDVEpECfAUp0wB48zroHwekQQnIEiGU6qSVEXd4Gq_d22bz410bblsNtb4kyXlcUY581Z46mZPVbZxzkpVrq1_1H6XBJc7d8udu-XBXY9f7_GFNgK2-n_6FwbUeNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2749275035</pqid></control><display><type>article</type><title>Wideband mmWave MIMO: One Prior-Aided LAMP-Based Network Combining with Residual Learning for Beamspace Channel Estimation</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Zhu, Chunhua ; Ji, Qinwen ; Guo, Xinying</creator><contributor>Li, Quanzhong ; Quanzhong Li</contributor><creatorcontrib>Zhu, Chunhua ; Ji, Qinwen ; Guo, Xinying ; Li, Quanzhong ; Quanzhong Li</creatorcontrib><description>Existing channel estimation schemes for wideband systems generally estimate the channel matrix by pre-estimating the common support, which has a limited validity owing to the effect of beam squint. It is worth noting that the learned approximate message passing (LAMP) network need not pre-estimate the support and has obtained a relatively reliable estimation quality in the narrowband systems. In order to degrade the performance penalty caused by inaccurate estimation of the support in the wideband millimeter-wave MIMO systems, a prior-aided Gaussian mixture LAMP (GM-LAMP) network combining with residual learning is presented. Specifically, the multicarrier Gaussian mixture threshold shrinkage function is constructed for the GM-LAMP network, which can directly estimate the wideband beamspace channel while avoiding pre-estimating the support; then, considering the impact of channel noise and the coarse estimation error by the GM-LAMP, a residual network (ResNet) is designed to improve the estimation performance. Simulation results validate the efficiency of the proposed network (referred to as GLAMP-ResNet) with the lower computational complexity compared with the existing schemes.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/7301273</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Antennas ; Broadband ; Channel noise ; Estimation ; Learning ; Message passing ; Millimeter waves ; MIMO communication ; Mixtures ; Narrowband ; Neural networks ; Performance degradation ; Sparsity</subject><ispartof>Mobile information systems, 2022, Vol.2022, p.1-6</ispartof><rights>Copyright © 2022 Chunhua Zhu et al.</rights><rights>Copyright © 2022 Chunhua Zhu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2093-e6078addaf449aca9d0012d00acfd36a78085fa575eba27b31606ad19082f68f3</cites><orcidid>0000-0001-6457-9531 ; 0000-0002-9295-0577 ; 0000-0003-2672-5483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Li, Quanzhong</contributor><contributor>Quanzhong Li</contributor><creatorcontrib>Zhu, Chunhua</creatorcontrib><creatorcontrib>Ji, Qinwen</creatorcontrib><creatorcontrib>Guo, Xinying</creatorcontrib><title>Wideband mmWave MIMO: One Prior-Aided LAMP-Based Network Combining with Residual Learning for Beamspace Channel Estimation</title><title>Mobile information systems</title><description>Existing channel estimation schemes for wideband systems generally estimate the channel matrix by pre-estimating the common support, which has a limited validity owing to the effect of beam squint. It is worth noting that the learned approximate message passing (LAMP) network need not pre-estimate the support and has obtained a relatively reliable estimation quality in the narrowband systems. In order to degrade the performance penalty caused by inaccurate estimation of the support in the wideband millimeter-wave MIMO systems, a prior-aided Gaussian mixture LAMP (GM-LAMP) network combining with residual learning is presented. Specifically, the multicarrier Gaussian mixture threshold shrinkage function is constructed for the GM-LAMP network, which can directly estimate the wideband beamspace channel while avoiding pre-estimating the support; then, considering the impact of channel noise and the coarse estimation error by the GM-LAMP, a residual network (ResNet) is designed to improve the estimation performance. Simulation results validate the efficiency of the proposed network (referred to as GLAMP-ResNet) with the lower computational complexity compared with the existing schemes.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Broadband</subject><subject>Channel noise</subject><subject>Estimation</subject><subject>Learning</subject><subject>Message passing</subject><subject>Millimeter waves</subject><subject>MIMO communication</subject><subject>Mixtures</subject><subject>Narrowband</subject><subject>Neural networks</subject><subject>Performance degradation</subject><subject>Sparsity</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kFFPwjAQxxejiYi--QGa-KiTtlvXzTdcUEmGEKOBt-VYWymyDtsh0U9vEZ59ubvc_XJ3_38QXBJ8SwhjPYop7fEIE8qjo6BDUs7CDLPZsa8Zj0NM-Ow0OHNuiXGCI8Y7wc9UCzkHI1BdT-FLotFwNL5DYyPRxOrGhn0_F6jojybhPThfPst229gPlDf1XBtt3tFWtwv0Ip0WG1ihQoL9a6vGonsJtVtDJVG-AGPkCg1cq2todWPOgxMFKycvDrkbvD0MXvOnsBg_DvN-EVYUZ1EoE8xTEAJUHGdQQSawF-gDVEpECfAUp0wB48zroHwekQQnIEiGU6qSVEXd4Gq_d22bz410bblsNtb4kyXlcUY581Z46mZPVbZxzkpVrq1_1H6XBJc7d8udu-XBXY9f7_GFNgK2-n_6FwbUeNU</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhu, Chunhua</creator><creator>Ji, Qinwen</creator><creator>Guo, Xinying</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6457-9531</orcidid><orcidid>https://orcid.org/0000-0002-9295-0577</orcidid><orcidid>https://orcid.org/0000-0003-2672-5483</orcidid></search><sort><creationdate>2022</creationdate><title>Wideband mmWave MIMO: One Prior-Aided LAMP-Based Network Combining with Residual Learning for Beamspace Channel Estimation</title><author>Zhu, Chunhua ; Ji, Qinwen ; Guo, Xinying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2093-e6078addaf449aca9d0012d00acfd36a78085fa575eba27b31606ad19082f68f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Broadband</topic><topic>Channel noise</topic><topic>Estimation</topic><topic>Learning</topic><topic>Message passing</topic><topic>Millimeter waves</topic><topic>MIMO communication</topic><topic>Mixtures</topic><topic>Narrowband</topic><topic>Neural networks</topic><topic>Performance degradation</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chunhua</creatorcontrib><creatorcontrib>Ji, Qinwen</creatorcontrib><creatorcontrib>Guo, Xinying</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chunhua</au><au>Ji, Qinwen</au><au>Guo, Xinying</au><au>Li, Quanzhong</au><au>Quanzhong Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wideband mmWave MIMO: One Prior-Aided LAMP-Based Network Combining with Residual Learning for Beamspace Channel Estimation</atitle><jtitle>Mobile information systems</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>Existing channel estimation schemes for wideband systems generally estimate the channel matrix by pre-estimating the common support, which has a limited validity owing to the effect of beam squint. It is worth noting that the learned approximate message passing (LAMP) network need not pre-estimate the support and has obtained a relatively reliable estimation quality in the narrowband systems. In order to degrade the performance penalty caused by inaccurate estimation of the support in the wideband millimeter-wave MIMO systems, a prior-aided Gaussian mixture LAMP (GM-LAMP) network combining with residual learning is presented. Specifically, the multicarrier Gaussian mixture threshold shrinkage function is constructed for the GM-LAMP network, which can directly estimate the wideband beamspace channel while avoiding pre-estimating the support; then, considering the impact of channel noise and the coarse estimation error by the GM-LAMP, a residual network (ResNet) is designed to improve the estimation performance. Simulation results validate the efficiency of the proposed network (referred to as GLAMP-ResNet) with the lower computational complexity compared with the existing schemes.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/7301273</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6457-9531</orcidid><orcidid>https://orcid.org/0000-0002-9295-0577</orcidid><orcidid>https://orcid.org/0000-0003-2672-5483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2022, Vol.2022, p.1-6
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2749275035
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Antennas
Broadband
Channel noise
Estimation
Learning
Message passing
Millimeter waves
MIMO communication
Mixtures
Narrowband
Neural networks
Performance degradation
Sparsity
title Wideband mmWave MIMO: One Prior-Aided LAMP-Based Network Combining with Residual Learning for Beamspace Channel Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wideband%20mmWave%20MIMO:%20One%20Prior-Aided%20LAMP-Based%20Network%20Combining%20with%20Residual%20Learning%20for%20Beamspace%20Channel%20Estimation&rft.jtitle=Mobile%20information%20systems&rft.au=Zhu,%20Chunhua&rft.date=2022&rft.volume=2022&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/7301273&rft_dat=%3Cproquest_cross%3E2749275035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2749275035&rft_id=info:pmid/&rfr_iscdi=true