Marginal Regression Models for Multivariate Failure Time Data

In this article we propose a general Cox-type regression model to formulate the marginal distributions of multivariate failure time data. This model has a nested structure in that it allows different baseline hazard functions among distinct failure types and imposes a common baseline hazard function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1998-09, Vol.93 (443), p.1164-1175
Hauptverfasser: Spiekerman, C. F., Lin, D. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1175
container_issue 443
container_start_page 1164
container_title Journal of the American Statistical Association
container_volume 93
creator Spiekerman, C. F.
Lin, D. Y.
description In this article we propose a general Cox-type regression model to formulate the marginal distributions of multivariate failure time data. This model has a nested structure in that it allows different baseline hazard functions among distinct failure types and imposes a common baseline hazard function on the failure times of the same type. We prove that the maximum "quasi-partial-likelihood" estimator for the vector of regression parameters under the independence working assumption is consistent and asymptotically normal with a covariance matrix for which a consistent estimator is provided. Furthermore, we establish the uniform consistency and joint weak convergence of the Aalen-Breslow type estimators for the cumulative baseline hazard functions, and develop a resampling technique to approximate the joint distribution of these processes, which enables one to make simultaneous inference about the survival functions over the time axis and across failure types. Finally, we assess the small-sample properties of the proposed methods through Monte Carlo simulation, and present an application to a real dental study.
doi_str_mv 10.1080/01621459.1998.10473777
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_274893800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2669859</jstor_id><sourcerecordid>2669859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2d3c4e02c80a9cefb8a7cc4eedd82c5ea25733897d3d7444dec83a6d5a63156c3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRbxujVfu8kePJRqVWgRpIK3MCbZkrJtarJV-u_N0la9OZeB4ZmXmQehS4IHBEt8g0lJCS-qAakqmUZcMCHEEeqRgomcCv52jHodlHfUKTqLcYFTCSl76HYKYe5W0GQvdh5sjM6vsqk3tolZ7UM23TSt-4TgoLXZGFyzCTabuaXN7qCFc3RSQxPtxb730ev4fjZ6zCfPD0-j4STXjJA2p4ZpbjHVEkOlbf0uQeg0scZIqgsLtBCMyUoYZgTn3FgtGZSmgJKRotSsj652uevgPzY2tmrhNyFdHVX6T1ZMYpygcgfp4GMMtlbr4JYQtopg1ZlSB1OqM6UOptLi9T4dooamDrDSLv5sU04kx_IXW8TWh7_hlGGhaFlWsqgSNtxhbpUELuHLh8aoFraND4do9s9F3wvJh7I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274893800</pqid></control><display><type>article</type><title>Marginal Regression Models for Multivariate Failure Time Data</title><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis Journals Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Spiekerman, C. F. ; Lin, D. Y.</creator><creatorcontrib>Spiekerman, C. F. ; Lin, D. Y.</creatorcontrib><description>In this article we propose a general Cox-type regression model to formulate the marginal distributions of multivariate failure time data. This model has a nested structure in that it allows different baseline hazard functions among distinct failure types and imposes a common baseline hazard function on the failure times of the same type. We prove that the maximum "quasi-partial-likelihood" estimator for the vector of regression parameters under the independence working assumption is consistent and asymptotically normal with a covariance matrix for which a consistent estimator is provided. Furthermore, we establish the uniform consistency and joint weak convergence of the Aalen-Breslow type estimators for the cumulative baseline hazard functions, and develop a resampling technique to approximate the joint distribution of these processes, which enables one to make simultaneous inference about the survival functions over the time axis and across failure types. Finally, we assess the small-sample properties of the proposed methods through Monte Carlo simulation, and present an application to a real dental study.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1998.10473777</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Censoring ; Censorship ; Clustered data ; Confidence band ; Correlated survival times ; Cox regression ; Estimators ; Exact sciences and technology ; Health hazards ; Inference ; Linear inference, regression ; Marginal model ; Martingales ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Perceptron convergence procedure ; Probability and statistics ; Proportional hazards ; Regression analysis ; Reliability functions ; Sciences and techniques of general use ; Statistics ; Survival function ; Teeth ; Temporal data ; Theory and Methods</subject><ispartof>Journal of the American Statistical Association, 1998-09, Vol.93 (443), p.1164-1175</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1998</rights><rights>Copyright 1998 American Statistical Association</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-2d3c4e02c80a9cefb8a7cc4eedd82c5ea25733897d3d7444dec83a6d5a63156c3</citedby><cites>FETCH-LOGICAL-c311t-2d3c4e02c80a9cefb8a7cc4eedd82c5ea25733897d3d7444dec83a6d5a63156c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2669859$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2669859$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27901,27902,57992,57996,58225,58229,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2418408$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spiekerman, C. F.</creatorcontrib><creatorcontrib>Lin, D. Y.</creatorcontrib><title>Marginal Regression Models for Multivariate Failure Time Data</title><title>Journal of the American Statistical Association</title><description>In this article we propose a general Cox-type regression model to formulate the marginal distributions of multivariate failure time data. This model has a nested structure in that it allows different baseline hazard functions among distinct failure types and imposes a common baseline hazard function on the failure times of the same type. We prove that the maximum "quasi-partial-likelihood" estimator for the vector of regression parameters under the independence working assumption is consistent and asymptotically normal with a covariance matrix for which a consistent estimator is provided. Furthermore, we establish the uniform consistency and joint weak convergence of the Aalen-Breslow type estimators for the cumulative baseline hazard functions, and develop a resampling technique to approximate the joint distribution of these processes, which enables one to make simultaneous inference about the survival functions over the time axis and across failure types. Finally, we assess the small-sample properties of the proposed methods through Monte Carlo simulation, and present an application to a real dental study.</description><subject>Censoring</subject><subject>Censorship</subject><subject>Clustered data</subject><subject>Confidence band</subject><subject>Correlated survival times</subject><subject>Cox regression</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Health hazards</subject><subject>Inference</subject><subject>Linear inference, regression</subject><subject>Marginal model</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Perceptron convergence procedure</subject><subject>Probability and statistics</subject><subject>Proportional hazards</subject><subject>Regression analysis</subject><subject>Reliability functions</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Survival function</subject><subject>Teeth</subject><subject>Temporal data</subject><subject>Theory and Methods</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LAzEQhoMoWKt_QRbxujVfu8kePJRqVWgRpIK3MCbZkrJtarJV-u_N0la9OZeB4ZmXmQehS4IHBEt8g0lJCS-qAakqmUZcMCHEEeqRgomcCv52jHodlHfUKTqLcYFTCSl76HYKYe5W0GQvdh5sjM6vsqk3tolZ7UM23TSt-4TgoLXZGFyzCTabuaXN7qCFc3RSQxPtxb730ev4fjZ6zCfPD0-j4STXjJA2p4ZpbjHVEkOlbf0uQeg0scZIqgsLtBCMyUoYZgTn3FgtGZSmgJKRotSsj652uevgPzY2tmrhNyFdHVX6T1ZMYpygcgfp4GMMtlbr4JYQtopg1ZlSB1OqM6UOptLi9T4dooamDrDSLv5sU04kx_IXW8TWh7_hlGGhaFlWsqgSNtxhbpUELuHLh8aoFraND4do9s9F3wvJh7I</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Spiekerman, C. F.</creator><creator>Lin, D. Y.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19980901</creationdate><title>Marginal Regression Models for Multivariate Failure Time Data</title><author>Spiekerman, C. F. ; Lin, D. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2d3c4e02c80a9cefb8a7cc4eedd82c5ea25733897d3d7444dec83a6d5a63156c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Censoring</topic><topic>Censorship</topic><topic>Clustered data</topic><topic>Confidence band</topic><topic>Correlated survival times</topic><topic>Cox regression</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Health hazards</topic><topic>Inference</topic><topic>Linear inference, regression</topic><topic>Marginal model</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Perceptron convergence procedure</topic><topic>Probability and statistics</topic><topic>Proportional hazards</topic><topic>Regression analysis</topic><topic>Reliability functions</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Survival function</topic><topic>Teeth</topic><topic>Temporal data</topic><topic>Theory and Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spiekerman, C. F.</creatorcontrib><creatorcontrib>Lin, D. Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiekerman, C. F.</au><au>Lin, D. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marginal Regression Models for Multivariate Failure Time Data</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1998-09-01</date><risdate>1998</risdate><volume>93</volume><issue>443</issue><spage>1164</spage><epage>1175</epage><pages>1164-1175</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>In this article we propose a general Cox-type regression model to formulate the marginal distributions of multivariate failure time data. This model has a nested structure in that it allows different baseline hazard functions among distinct failure types and imposes a common baseline hazard function on the failure times of the same type. We prove that the maximum "quasi-partial-likelihood" estimator for the vector of regression parameters under the independence working assumption is consistent and asymptotically normal with a covariance matrix for which a consistent estimator is provided. Furthermore, we establish the uniform consistency and joint weak convergence of the Aalen-Breslow type estimators for the cumulative baseline hazard functions, and develop a resampling technique to approximate the joint distribution of these processes, which enables one to make simultaneous inference about the survival functions over the time axis and across failure types. Finally, we assess the small-sample properties of the proposed methods through Monte Carlo simulation, and present an application to a real dental study.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1998.10473777</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1998-09, Vol.93 (443), p.1164-1175
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_274893800
source Jstor Complete Legacy; Taylor & Francis Journals Complete; JSTOR Mathematics & Statistics
subjects Censoring
Censorship
Clustered data
Confidence band
Correlated survival times
Cox regression
Estimators
Exact sciences and technology
Health hazards
Inference
Linear inference, regression
Marginal model
Martingales
Mathematics
Multivariate analysis
Nonparametric inference
Perceptron convergence procedure
Probability and statistics
Proportional hazards
Regression analysis
Reliability functions
Sciences and techniques of general use
Statistics
Survival function
Teeth
Temporal data
Theory and Methods
title Marginal Regression Models for Multivariate Failure Time Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marginal%20Regression%20Models%20for%20Multivariate%20Failure%20Time%20Data&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Spiekerman,%20C.%20F.&rft.date=1998-09-01&rft.volume=93&rft.issue=443&rft.spage=1164&rft.epage=1175&rft.pages=1164-1175&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1998.10473777&rft_dat=%3Cjstor_proqu%3E2669859%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274893800&rft_id=info:pmid/&rft_jstor_id=2669859&rfr_iscdi=true