Bio‐inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis

Background Earth's abundant natural materials can be exploited for their potential in producing economically viable and sustainable electrocatalysts for clean energy generation. Herein, we employed a low cost and environmentally benign synthesis approach using plant extract as capping agent to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical technology and biotechnology (1986) 2023-01, Vol.98 (1), p.296-305
Hauptverfasser: Zahra, Taghazal, Ahmad, Khuram Shahzad, Zequine, Camila, Gupta, Ram, Malik, Mohammad Azad, Niazi, Javed H., Qureshi, Anjum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 1
container_start_page 296
container_title Journal of chemical technology and biotechnology (1986)
container_volume 98
creator Zahra, Taghazal
Ahmad, Khuram Shahzad
Zequine, Camila
Gupta, Ram
Malik, Mohammad Azad
Niazi, Javed H.
Qureshi, Anjum
description Background Earth's abundant natural materials can be exploited for their potential in producing economically viable and sustainable electrocatalysts for clean energy generation. Herein, we employed a low cost and environmentally benign synthesis approach using plant extract as capping agent to synthesize bimetallic NiO/ZrO2 (nickel/Zirconiu mixed oxides; NZMO), and then studied their electrocatalytic properties. Results The synthesized material was characterized for its elemental, compositional and morphological feature elucidation. The phytocapping agents were probed by Fourier transform infrared spectroscopy (FTIR) and gas chromatography–mass spectroscopy (GC–MS) which confirmed the active contribution of phytocompounds in synthesis as capping and stabilizing agents. Elemental and X‐ray photoelectron spectroscopic (XPS) analysis manifested the presence of Ni, Zr and O content with morphological elucidations representing well‐defined structures. The synthesized material was systematically investigated for electrocatalytic performance towards an oxygen evolution reaction (OER). Electrochemical testing showed that the NZMO exhibits remarkable enhanced catalytic activity with 0.39 V overpotential value and 72 mV dec−1 Tafel value at an existing density of 10 mA cm−2, which is comparable to that of precious metal catalysts. Conclusion Experimental investigation demonstrates that the remarkable OER performance of NZMO could be attributed to intrinsic catalytic properties originating as a result of binary materials. Moreover, the organic compounds involved in the synthesis mechanism also could be the major contributors in terms of provision of active sites due to protons. Thus, the present work presents a promising electrocatalytic material using mixed metal oxides and paves a novel path toward the green synthesis of binary oxides with improved electrocatalytic performance. © 2022 Society of Chemical Industry (SCI).
doi_str_mv 10.1002/jctb.7246
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2748676800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748676800</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2236-dfc2b802a42acc9655aff1a4d56ae375b3b7cd6331325b70328bd0d1cbde510a3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4AaW2MAirX9iO2UHFb8qzaZsurEcx6GukrjYKTQLJI7AGTkJicpq3sw8jd58AJxjNMIIkfFaN9lIkJgfgAFGExHFnKNDMECEJxFhgh2DkxDWCCGeED4AX7fW_X7_2DpsrDc5nNt0vPQpgZXdda3b2dwEeDlfvqRXsHC-m7Rvpobmw5XbxroaeqN0L8I1LLyrYKG0LQ0Mbd2sTLABNg6a0ujGO70yldWqhKpWZdvtTsFRocpgzv7rELze3y2mj9EsfXia3syiDSGUR3mhSZYgomKitJ5wxlRRYBXnjCtDBctoJnTOKcWUsEwgSpIsRznWWW4YRooOwcX-7sa7960JjVy7re9CBElEnHDBE4Q613jv-uweaOXG20r5VmIke7SyRyt7tPJ5urjtBf0DDCdxFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748676800</pqid></control><display><type>article</type><title>Bio‐inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis</title><source>Wiley Online Library All Journals</source><creator>Zahra, Taghazal ; Ahmad, Khuram Shahzad ; Zequine, Camila ; Gupta, Ram ; Malik, Mohammad Azad ; Niazi, Javed H. ; Qureshi, Anjum</creator><creatorcontrib>Zahra, Taghazal ; Ahmad, Khuram Shahzad ; Zequine, Camila ; Gupta, Ram ; Malik, Mohammad Azad ; Niazi, Javed H. ; Qureshi, Anjum</creatorcontrib><description>Background Earth's abundant natural materials can be exploited for their potential in producing economically viable and sustainable electrocatalysts for clean energy generation. Herein, we employed a low cost and environmentally benign synthesis approach using plant extract as capping agent to synthesize bimetallic NiO/ZrO2 (nickel/Zirconiu mixed oxides; NZMO), and then studied their electrocatalytic properties. Results The synthesized material was characterized for its elemental, compositional and morphological feature elucidation. The phytocapping agents were probed by Fourier transform infrared spectroscopy (FTIR) and gas chromatography–mass spectroscopy (GC–MS) which confirmed the active contribution of phytocompounds in synthesis as capping and stabilizing agents. Elemental and X‐ray photoelectron spectroscopic (XPS) analysis manifested the presence of Ni, Zr and O content with morphological elucidations representing well‐defined structures. The synthesized material was systematically investigated for electrocatalytic performance towards an oxygen evolution reaction (OER). Electrochemical testing showed that the NZMO exhibits remarkable enhanced catalytic activity with 0.39 V overpotential value and 72 mV dec−1 Tafel value at an existing density of 10 mA cm−2, which is comparable to that of precious metal catalysts. Conclusion Experimental investigation demonstrates that the remarkable OER performance of NZMO could be attributed to intrinsic catalytic properties originating as a result of binary materials. Moreover, the organic compounds involved in the synthesis mechanism also could be the major contributors in terms of provision of active sites due to protons. Thus, the present work presents a promising electrocatalytic material using mixed metal oxides and paves a novel path toward the green synthesis of binary oxides with improved electrocatalytic performance. © 2022 Society of Chemical Industry (SCI).</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.7246</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Bimetals ; Capping ; Catalysts ; Catalytic activity ; Chemical reactions ; Chemical synthesis ; Clean energy ; electrocatalyst ; Electrocatalysts ; Electrochemical analysis ; Electrochemistry ; Fourier transforms ; Gas chromatography ; Infrared spectroscopy ; Mass spectroscopy ; Metal oxides ; mixed metal oxides ; Mixed oxides ; Morphology ; Nickel ; Nickel oxides ; Organic compounds ; Oxides ; Oxygen ; oxygen evolution reaction ; Oxygen evolution reactions ; Photoelectrons ; phytocapping agents ; Plant extracts ; Protons ; Spectrum analysis ; Stabilizers (agents) ; X ray photoelectron spectroscopy ; Zirconium dioxide</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2023-01, Vol.98 (1), p.296-305</ispartof><rights>2022 Society of Chemical Industry (SCI).</rights><rights>Copyright © 2023 Society of Chemical Industry (SCI)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9171-8904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjctb.7246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjctb.7246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Zahra, Taghazal</creatorcontrib><creatorcontrib>Ahmad, Khuram Shahzad</creatorcontrib><creatorcontrib>Zequine, Camila</creatorcontrib><creatorcontrib>Gupta, Ram</creatorcontrib><creatorcontrib>Malik, Mohammad Azad</creatorcontrib><creatorcontrib>Niazi, Javed H.</creatorcontrib><creatorcontrib>Qureshi, Anjum</creatorcontrib><title>Bio‐inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis</title><title>Journal of chemical technology and biotechnology (1986)</title><description>Background Earth's abundant natural materials can be exploited for their potential in producing economically viable and sustainable electrocatalysts for clean energy generation. Herein, we employed a low cost and environmentally benign synthesis approach using plant extract as capping agent to synthesize bimetallic NiO/ZrO2 (nickel/Zirconiu mixed oxides; NZMO), and then studied their electrocatalytic properties. Results The synthesized material was characterized for its elemental, compositional and morphological feature elucidation. The phytocapping agents were probed by Fourier transform infrared spectroscopy (FTIR) and gas chromatography–mass spectroscopy (GC–MS) which confirmed the active contribution of phytocompounds in synthesis as capping and stabilizing agents. Elemental and X‐ray photoelectron spectroscopic (XPS) analysis manifested the presence of Ni, Zr and O content with morphological elucidations representing well‐defined structures. The synthesized material was systematically investigated for electrocatalytic performance towards an oxygen evolution reaction (OER). Electrochemical testing showed that the NZMO exhibits remarkable enhanced catalytic activity with 0.39 V overpotential value and 72 mV dec−1 Tafel value at an existing density of 10 mA cm−2, which is comparable to that of precious metal catalysts. Conclusion Experimental investigation demonstrates that the remarkable OER performance of NZMO could be attributed to intrinsic catalytic properties originating as a result of binary materials. Moreover, the organic compounds involved in the synthesis mechanism also could be the major contributors in terms of provision of active sites due to protons. Thus, the present work presents a promising electrocatalytic material using mixed metal oxides and paves a novel path toward the green synthesis of binary oxides with improved electrocatalytic performance. © 2022 Society of Chemical Industry (SCI).</description><subject>Bimetals</subject><subject>Capping</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Clean energy</subject><subject>electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Infrared spectroscopy</subject><subject>Mass spectroscopy</subject><subject>Metal oxides</subject><subject>mixed metal oxides</subject><subject>Mixed oxides</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Nickel oxides</subject><subject>Organic compounds</subject><subject>Oxides</subject><subject>Oxygen</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrons</subject><subject>phytocapping agents</subject><subject>Plant extracts</subject><subject>Protons</subject><subject>Spectrum analysis</subject><subject>Stabilizers (agents)</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zirconium dioxide</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4AaW2MAirX9iO2UHFb8qzaZsurEcx6GukrjYKTQLJI7AGTkJicpq3sw8jd58AJxjNMIIkfFaN9lIkJgfgAFGExHFnKNDMECEJxFhgh2DkxDWCCGeED4AX7fW_X7_2DpsrDc5nNt0vPQpgZXdda3b2dwEeDlfvqRXsHC-m7Rvpobmw5XbxroaeqN0L8I1LLyrYKG0LQ0Mbd2sTLABNg6a0ujGO70yldWqhKpWZdvtTsFRocpgzv7rELze3y2mj9EsfXia3syiDSGUR3mhSZYgomKitJ5wxlRRYBXnjCtDBctoJnTOKcWUsEwgSpIsRznWWW4YRooOwcX-7sa7960JjVy7re9CBElEnHDBE4Q613jv-uweaOXG20r5VmIke7SyRyt7tPJ5urjtBf0DDCdxFw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Zahra, Taghazal</creator><creator>Ahmad, Khuram Shahzad</creator><creator>Zequine, Camila</creator><creator>Gupta, Ram</creator><creator>Malik, Mohammad Azad</creator><creator>Niazi, Javed H.</creator><creator>Qureshi, Anjum</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-9171-8904</orcidid></search><sort><creationdate>202301</creationdate><title>Bio‐inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis</title><author>Zahra, Taghazal ; Ahmad, Khuram Shahzad ; Zequine, Camila ; Gupta, Ram ; Malik, Mohammad Azad ; Niazi, Javed H. ; Qureshi, Anjum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2236-dfc2b802a42acc9655aff1a4d56ae375b3b7cd6331325b70328bd0d1cbde510a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bimetals</topic><topic>Capping</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Clean energy</topic><topic>electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Infrared spectroscopy</topic><topic>Mass spectroscopy</topic><topic>Metal oxides</topic><topic>mixed metal oxides</topic><topic>Mixed oxides</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Nickel oxides</topic><topic>Organic compounds</topic><topic>Oxides</topic><topic>Oxygen</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrons</topic><topic>phytocapping agents</topic><topic>Plant extracts</topic><topic>Protons</topic><topic>Spectrum analysis</topic><topic>Stabilizers (agents)</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahra, Taghazal</creatorcontrib><creatorcontrib>Ahmad, Khuram Shahzad</creatorcontrib><creatorcontrib>Zequine, Camila</creatorcontrib><creatorcontrib>Gupta, Ram</creatorcontrib><creatorcontrib>Malik, Mohammad Azad</creatorcontrib><creatorcontrib>Niazi, Javed H.</creatorcontrib><creatorcontrib>Qureshi, Anjum</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahra, Taghazal</au><au>Ahmad, Khuram Shahzad</au><au>Zequine, Camila</au><au>Gupta, Ram</au><au>Malik, Mohammad Azad</au><au>Niazi, Javed H.</au><au>Qureshi, Anjum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2023-01</date><risdate>2023</risdate><volume>98</volume><issue>1</issue><spage>296</spage><epage>305</epage><pages>296-305</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>Background Earth's abundant natural materials can be exploited for their potential in producing economically viable and sustainable electrocatalysts for clean energy generation. Herein, we employed a low cost and environmentally benign synthesis approach using plant extract as capping agent to synthesize bimetallic NiO/ZrO2 (nickel/Zirconiu mixed oxides; NZMO), and then studied their electrocatalytic properties. Results The synthesized material was characterized for its elemental, compositional and morphological feature elucidation. The phytocapping agents were probed by Fourier transform infrared spectroscopy (FTIR) and gas chromatography–mass spectroscopy (GC–MS) which confirmed the active contribution of phytocompounds in synthesis as capping and stabilizing agents. Elemental and X‐ray photoelectron spectroscopic (XPS) analysis manifested the presence of Ni, Zr and O content with morphological elucidations representing well‐defined structures. The synthesized material was systematically investigated for electrocatalytic performance towards an oxygen evolution reaction (OER). Electrochemical testing showed that the NZMO exhibits remarkable enhanced catalytic activity with 0.39 V overpotential value and 72 mV dec−1 Tafel value at an existing density of 10 mA cm−2, which is comparable to that of precious metal catalysts. Conclusion Experimental investigation demonstrates that the remarkable OER performance of NZMO could be attributed to intrinsic catalytic properties originating as a result of binary materials. Moreover, the organic compounds involved in the synthesis mechanism also could be the major contributors in terms of provision of active sites due to protons. Thus, the present work presents a promising electrocatalytic material using mixed metal oxides and paves a novel path toward the green synthesis of binary oxides with improved electrocatalytic performance. © 2022 Society of Chemical Industry (SCI).</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.7246</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9171-8904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2023-01, Vol.98 (1), p.296-305
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2748676800
source Wiley Online Library All Journals
subjects Bimetals
Capping
Catalysts
Catalytic activity
Chemical reactions
Chemical synthesis
Clean energy
electrocatalyst
Electrocatalysts
Electrochemical analysis
Electrochemistry
Fourier transforms
Gas chromatography
Infrared spectroscopy
Mass spectroscopy
Metal oxides
mixed metal oxides
Mixed oxides
Morphology
Nickel
Nickel oxides
Organic compounds
Oxides
Oxygen
oxygen evolution reaction
Oxygen evolution reactions
Photoelectrons
phytocapping agents
Plant extracts
Protons
Spectrum analysis
Stabilizers (agents)
X ray photoelectron spectroscopy
Zirconium dioxide
title Bio‐inspired NiO/ZrO2 mixed oxides (NZMO) for oxygen evolution reactions: from facile synthesis to electrochemical analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90inspired%20NiO/ZrO2%20mixed%20oxides%20(NZMO)%20for%20oxygen%20evolution%20reactions:%20from%20facile%20synthesis%20to%20electrochemical%20analysis&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Zahra,%20Taghazal&rft.date=2023-01&rft.volume=98&rft.issue=1&rft.spage=296&rft.epage=305&rft.pages=296-305&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.7246&rft_dat=%3Cproquest_wiley%3E2748676800%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748676800&rft_id=info:pmid/&rfr_iscdi=true