Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions

In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-j...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-12, Vol.14 (23), p.15839
Hauptverfasser: Li, Dalong, Liu, Benxing, Jiao, Fangtong, Song, Ziwen, Zhao, Pengsheng, Wang, Xiaoqing, Sun, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 15839
container_title Sustainability
container_volume 14
creator Li, Dalong
Liu, Benxing
Jiao, Fangtong
Song, Ziwen
Zhao, Pengsheng
Wang, Xiaoqing
Sun, Feng
description In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.
doi_str_mv 10.3390/su142315839
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2748568319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747189664</galeid><sourcerecordid>A747189664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-651ad7aa3142d9f6e8d15c9101a8c6f99c9f470cd3cee4d43aa8f919c4ae659b3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGpP_oGAJ5GtyWY3uznW4kehpWDtOaT5aFN2k7rJgvrrTakHO3OYYXjmnRkGgFuMxoQw9Bh6XOQElzVhF2CQowpnGJXo8l9-DUYh7FEyQjDDdADWy0O0rf0R0XoHFzruvILewKlvN9ZpBRd9E2228ErDpz7Aldxp1TfWbWHvlO7g2m1EI5xM6NQ7ZY864QZcGdEEPfqLQ7B-ef6YvmXz5etsOplnkuQsZrTEQlVCkLS4YobqWuFSMoywqCU1jElmigpJRaTWhSqIELVhmMlCaFqyDRmCu5PuofOfvQ6R733fuTSS51VRl7ROZyZqfKK2otHcOuNjJ2RypVsrvdPGpvqkKipcM0qL1HB_1pCYqL_iVvQh8Nnq_Zx9OLGy8yF02vBDZ1vRfXOM-PEv_N9fyC-3A36-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748568319</pqid></control><display><type>article</type><title>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Li, Dalong ; Liu, Benxing ; Jiao, Fangtong ; Song, Ziwen ; Zhao, Pengsheng ; Wang, Xiaoqing ; Sun, Feng</creator><creatorcontrib>Li, Dalong ; Liu, Benxing ; Jiao, Fangtong ; Song, Ziwen ; Zhao, Pengsheng ; Wang, Xiaoqing ; Sun, Feng</creatorcontrib><description>In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142315839</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bus industry ; Comparative studies ; Energy consumption ; Integrated circuits ; Linear programming ; Management ; Mathematical optimization ; Methods ; Optimization ; Optimization models ; Passengers ; Scheduling ; Scheduling (Management) ; Search algorithms ; Travel ; Vehicles</subject><ispartof>Sustainability, 2022-12, Vol.14 (23), p.15839</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-651ad7aa3142d9f6e8d15c9101a8c6f99c9f470cd3cee4d43aa8f919c4ae659b3</cites><orcidid>0000-0002-1184-8184 ; 0000-0002-1418-6657 ; 0000-0002-7897-6973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Dalong</creatorcontrib><creatorcontrib>Liu, Benxing</creatorcontrib><creatorcontrib>Jiao, Fangtong</creatorcontrib><creatorcontrib>Song, Ziwen</creatorcontrib><creatorcontrib>Zhao, Pengsheng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><title>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</title><title>Sustainability</title><description>In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.</description><subject>Algorithms</subject><subject>Bus industry</subject><subject>Comparative studies</subject><subject>Energy consumption</subject><subject>Integrated circuits</subject><subject>Linear programming</subject><subject>Management</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Passengers</subject><subject>Scheduling</subject><subject>Scheduling (Management)</subject><subject>Search algorithms</subject><subject>Travel</subject><subject>Vehicles</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU1LAzEQhoMoWGpP_oGAJ5GtyWY3uznW4kehpWDtOaT5aFN2k7rJgvrrTakHO3OYYXjmnRkGgFuMxoQw9Bh6XOQElzVhF2CQowpnGJXo8l9-DUYh7FEyQjDDdADWy0O0rf0R0XoHFzruvILewKlvN9ZpBRd9E2228ErDpz7Aldxp1TfWbWHvlO7g2m1EI5xM6NQ7ZY864QZcGdEEPfqLQ7B-ef6YvmXz5etsOplnkuQsZrTEQlVCkLS4YobqWuFSMoywqCU1jElmigpJRaTWhSqIELVhmMlCaFqyDRmCu5PuofOfvQ6R733fuTSS51VRl7ROZyZqfKK2otHcOuNjJ2RypVsrvdPGpvqkKipcM0qL1HB_1pCYqL_iVvQh8Nnq_Zx9OLGy8yF02vBDZ1vRfXOM-PEv_N9fyC-3A36-</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Dalong</creator><creator>Liu, Benxing</creator><creator>Jiao, Fangtong</creator><creator>Song, Ziwen</creator><creator>Zhao, Pengsheng</creator><creator>Wang, Xiaoqing</creator><creator>Sun, Feng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1184-8184</orcidid><orcidid>https://orcid.org/0000-0002-1418-6657</orcidid><orcidid>https://orcid.org/0000-0002-7897-6973</orcidid></search><sort><creationdate>20221201</creationdate><title>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</title><author>Li, Dalong ; Liu, Benxing ; Jiao, Fangtong ; Song, Ziwen ; Zhao, Pengsheng ; Wang, Xiaoqing ; Sun, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-651ad7aa3142d9f6e8d15c9101a8c6f99c9f470cd3cee4d43aa8f919c4ae659b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bus industry</topic><topic>Comparative studies</topic><topic>Energy consumption</topic><topic>Integrated circuits</topic><topic>Linear programming</topic><topic>Management</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Passengers</topic><topic>Scheduling</topic><topic>Scheduling (Management)</topic><topic>Search algorithms</topic><topic>Travel</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dalong</creatorcontrib><creatorcontrib>Liu, Benxing</creatorcontrib><creatorcontrib>Jiao, Fangtong</creatorcontrib><creatorcontrib>Song, Ziwen</creatorcontrib><creatorcontrib>Zhao, Pengsheng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dalong</au><au>Liu, Benxing</au><au>Jiao, Fangtong</au><au>Song, Ziwen</au><au>Zhao, Pengsheng</au><au>Wang, Xiaoqing</au><au>Sun, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</atitle><jtitle>Sustainability</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>23</issue><spage>15839</spage><pages>15839-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142315839</doi><orcidid>https://orcid.org/0000-0002-1184-8184</orcidid><orcidid>https://orcid.org/0000-0002-1418-6657</orcidid><orcidid>https://orcid.org/0000-0002-7897-6973</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-12, Vol.14 (23), p.15839
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2748568319
source MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library
subjects Algorithms
Bus industry
Comparative studies
Energy consumption
Integrated circuits
Linear programming
Management
Mathematical optimization
Methods
Optimization
Optimization models
Passengers
Scheduling
Scheduling (Management)
Search algorithms
Travel
Vehicles
title Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Method%20of%20Combined%20Multi-Mode%20Bus%20Scheduling%20under%20Unbalanced%20Conditions&rft.jtitle=Sustainability&rft.au=Li,%20Dalong&rft.date=2022-12-01&rft.volume=14&rft.issue=23&rft.spage=15839&rft.pages=15839-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142315839&rft_dat=%3Cgale_proqu%3EA747189664%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748568319&rft_id=info:pmid/&rft_galeid=A747189664&rfr_iscdi=true