Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions
In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-j...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-12, Vol.14 (23), p.15839 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 15839 |
container_title | Sustainability |
container_volume | 14 |
creator | Li, Dalong Liu, Benxing Jiao, Fangtong Song, Ziwen Zhao, Pengsheng Wang, Xiaoqing Sun, Feng |
description | In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution. |
doi_str_mv | 10.3390/su142315839 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2748568319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747189664</galeid><sourcerecordid>A747189664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-651ad7aa3142d9f6e8d15c9101a8c6f99c9f470cd3cee4d43aa8f919c4ae659b3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGpP_oGAJ5GtyWY3uznW4kehpWDtOaT5aFN2k7rJgvrrTakHO3OYYXjmnRkGgFuMxoQw9Bh6XOQElzVhF2CQowpnGJXo8l9-DUYh7FEyQjDDdADWy0O0rf0R0XoHFzruvILewKlvN9ZpBRd9E2228ErDpz7Aldxp1TfWbWHvlO7g2m1EI5xM6NQ7ZY864QZcGdEEPfqLQ7B-ef6YvmXz5etsOplnkuQsZrTEQlVCkLS4YobqWuFSMoywqCU1jElmigpJRaTWhSqIELVhmMlCaFqyDRmCu5PuofOfvQ6R733fuTSS51VRl7ROZyZqfKK2otHcOuNjJ2RypVsrvdPGpvqkKipcM0qL1HB_1pCYqL_iVvQh8Nnq_Zx9OLGy8yF02vBDZ1vRfXOM-PEv_N9fyC-3A36-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748568319</pqid></control><display><type>article</type><title>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB Electronic Journals Library</source><creator>Li, Dalong ; Liu, Benxing ; Jiao, Fangtong ; Song, Ziwen ; Zhao, Pengsheng ; Wang, Xiaoqing ; Sun, Feng</creator><creatorcontrib>Li, Dalong ; Liu, Benxing ; Jiao, Fangtong ; Song, Ziwen ; Zhao, Pengsheng ; Wang, Xiaoqing ; Sun, Feng</creatorcontrib><description>In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142315839</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Bus industry ; Comparative studies ; Energy consumption ; Integrated circuits ; Linear programming ; Management ; Mathematical optimization ; Methods ; Optimization ; Optimization models ; Passengers ; Scheduling ; Scheduling (Management) ; Search algorithms ; Travel ; Vehicles</subject><ispartof>Sustainability, 2022-12, Vol.14 (23), p.15839</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-651ad7aa3142d9f6e8d15c9101a8c6f99c9f470cd3cee4d43aa8f919c4ae659b3</cites><orcidid>0000-0002-1184-8184 ; 0000-0002-1418-6657 ; 0000-0002-7897-6973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Dalong</creatorcontrib><creatorcontrib>Liu, Benxing</creatorcontrib><creatorcontrib>Jiao, Fangtong</creatorcontrib><creatorcontrib>Song, Ziwen</creatorcontrib><creatorcontrib>Zhao, Pengsheng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><title>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</title><title>Sustainability</title><description>In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.</description><subject>Algorithms</subject><subject>Bus industry</subject><subject>Comparative studies</subject><subject>Energy consumption</subject><subject>Integrated circuits</subject><subject>Linear programming</subject><subject>Management</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Passengers</subject><subject>Scheduling</subject><subject>Scheduling (Management)</subject><subject>Search algorithms</subject><subject>Travel</subject><subject>Vehicles</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU1LAzEQhoMoWGpP_oGAJ5GtyWY3uznW4kehpWDtOaT5aFN2k7rJgvrrTakHO3OYYXjmnRkGgFuMxoQw9Bh6XOQElzVhF2CQowpnGJXo8l9-DUYh7FEyQjDDdADWy0O0rf0R0XoHFzruvILewKlvN9ZpBRd9E2228ErDpz7Aldxp1TfWbWHvlO7g2m1EI5xM6NQ7ZY864QZcGdEEPfqLQ7B-ef6YvmXz5etsOplnkuQsZrTEQlVCkLS4YobqWuFSMoywqCU1jElmigpJRaTWhSqIELVhmMlCaFqyDRmCu5PuofOfvQ6R733fuTSS51VRl7ROZyZqfKK2otHcOuNjJ2RypVsrvdPGpvqkKipcM0qL1HB_1pCYqL_iVvQh8Nnq_Zx9OLGy8yF02vBDZ1vRfXOM-PEv_N9fyC-3A36-</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Li, Dalong</creator><creator>Liu, Benxing</creator><creator>Jiao, Fangtong</creator><creator>Song, Ziwen</creator><creator>Zhao, Pengsheng</creator><creator>Wang, Xiaoqing</creator><creator>Sun, Feng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1184-8184</orcidid><orcidid>https://orcid.org/0000-0002-1418-6657</orcidid><orcidid>https://orcid.org/0000-0002-7897-6973</orcidid></search><sort><creationdate>20221201</creationdate><title>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</title><author>Li, Dalong ; Liu, Benxing ; Jiao, Fangtong ; Song, Ziwen ; Zhao, Pengsheng ; Wang, Xiaoqing ; Sun, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-651ad7aa3142d9f6e8d15c9101a8c6f99c9f470cd3cee4d43aa8f919c4ae659b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Bus industry</topic><topic>Comparative studies</topic><topic>Energy consumption</topic><topic>Integrated circuits</topic><topic>Linear programming</topic><topic>Management</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Passengers</topic><topic>Scheduling</topic><topic>Scheduling (Management)</topic><topic>Search algorithms</topic><topic>Travel</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dalong</creatorcontrib><creatorcontrib>Liu, Benxing</creatorcontrib><creatorcontrib>Jiao, Fangtong</creatorcontrib><creatorcontrib>Song, Ziwen</creatorcontrib><creatorcontrib>Zhao, Pengsheng</creatorcontrib><creatorcontrib>Wang, Xiaoqing</creatorcontrib><creatorcontrib>Sun, Feng</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dalong</au><au>Liu, Benxing</au><au>Jiao, Fangtong</au><au>Song, Ziwen</au><au>Zhao, Pengsheng</au><au>Wang, Xiaoqing</au><au>Sun, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions</atitle><jtitle>Sustainability</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>23</issue><spage>15839</spage><pages>15839-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In view of the spatial and temporal imbalance of residents’ travel demands and challenges of optimal bus capacity allocation, in this paper the grand station express bus scheduling mode is introduced in the direction of heavy passenger flow during peak hours. Coordinated scheduling combining whole-journey and grand station express buses is adopted, and the station correlation calculation model is used to determine the optimal stops of the grand station express bus. Thus, a two-way bus scheduling optimization model for peak passenger flow is established with the goal of minimizing the total cost of passenger travel and enterprise operation. Finally, the nonlinear inertia weight dynamic cuckoo search algorithm is selected for the model’s solution, and the established scheduling optimization model is solved by combining basic data such as the study line’s bus Integrated Circuit (IC) card data. The effectiveness of the model is verified through a comparative study and evaluation of the solution.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142315839</doi><orcidid>https://orcid.org/0000-0002-1184-8184</orcidid><orcidid>https://orcid.org/0000-0002-1418-6657</orcidid><orcidid>https://orcid.org/0000-0002-7897-6973</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-12, Vol.14 (23), p.15839 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2748568319 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB Electronic Journals Library |
subjects | Algorithms Bus industry Comparative studies Energy consumption Integrated circuits Linear programming Management Mathematical optimization Methods Optimization Optimization models Passengers Scheduling Scheduling (Management) Search algorithms Travel Vehicles |
title | Optimization Method of Combined Multi-Mode Bus Scheduling under Unbalanced Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Method%20of%20Combined%20Multi-Mode%20Bus%20Scheduling%20under%20Unbalanced%20Conditions&rft.jtitle=Sustainability&rft.au=Li,%20Dalong&rft.date=2022-12-01&rft.volume=14&rft.issue=23&rft.spage=15839&rft.pages=15839-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142315839&rft_dat=%3Cgale_proqu%3EA747189664%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748568319&rft_id=info:pmid/&rft_galeid=A747189664&rfr_iscdi=true |