Construction Safety Risk Model with Construction Accident Network: A Graph Convolutional Network Approach

Construction risk assessment (RA) based on expert knowledge and experience incorporates uncertainties that reduce its accuracy and effectiveness in implementing countermeasures. To support the construction of RA procedures and enhance associated decision-making processes, machine learning (ML) appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-11, Vol.14 (23), p.15906
Hauptverfasser: Mostofi, Fatemeh, Toğan, Vedat, Ayözen, Yunus Emre, Tokdemir, Onur Behzat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 15906
container_title Sustainability
container_volume 14
creator Mostofi, Fatemeh
Toğan, Vedat
Ayözen, Yunus Emre
Tokdemir, Onur Behzat
description Construction risk assessment (RA) based on expert knowledge and experience incorporates uncertainties that reduce its accuracy and effectiveness in implementing countermeasures. To support the construction of RA procedures and enhance associated decision-making processes, machine learning (ML) approaches have recently been investigated in the literature. Most ML approaches have difficulty processing dependency information from real-life construction datasets. This study developed a novel RA model that incorporates a graph convolutional network (GCN) to account for dependency information between construction accidents. For this purpose, the construction accident dataset was restructured into an accident network, wherein the accidents were connected based on the shared project type. The GCN decodes the construction accident network information to predict each construction activity’s severity outcome, resulting in a prediction accuracy of 94%. Compared with the benchmark feedforward network (FFN) model, the GCN demonstrated a higher prediction accuracy and better generalization ability. The developed GCN severity predictor allows construction professionals to identify high-risk construction accident scenarios while considering dependency based on the shared project type. Ultimately, understanding the relational information between construction accidents increases the representativeness of RA severity predictors, enriches ML models’ comprehension, and results in a more reliable safety model for construction professionals.
doi_str_mv 10.3390/su142315906
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2748568286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747188877</galeid><sourcerecordid>A747188877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-9c2a828984ed0353c3e470e2943910cd67ce45ffe9656848e07ad1f9a33819163</originalsourceid><addsrcrecordid>eNpt0U1LwzAYB_AiCg7dyS8Q8CSymTRtk3grQ-dgKmx6DiF9umXrmpmkzn17O6ewgckhIfn988ITRVcE9ykV-M43JIkpSQXOTqJOjBnpEZzi04P5edT1foHbRikRJOtEZmBrH1yjg7E1mqoSwhZNjF-iZ1tAhTYmzNGRybU2BdQBvUDYWLe8RzkaOrX-YZ-2anZKVX_bKF-vnVV6fhmdlary0P0dL6L3x4e3wVNv_DocDfJxT1MhQk_oWPGYC55AgWlKNYWEYYhFQgXBusiYhiQtSxBZmvGEA2aqIKVQlPLdl-hFdL0_t732owEf5MI2rn2RlzFLeBuK-YGaqQqkqUsbnNIr47XMWcII55yxVvX_UW0vYGW0raE07fpR4OYo0JoAX2GmGu_laDo5trd7q5313kEp186slNtKguWuovKgovQbUrCQlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748568286</pqid></control><display><type>article</type><title>Construction Safety Risk Model with Construction Accident Network: A Graph Convolutional Network Approach</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mostofi, Fatemeh ; Toğan, Vedat ; Ayözen, Yunus Emre ; Tokdemir, Onur Behzat</creator><creatorcontrib>Mostofi, Fatemeh ; Toğan, Vedat ; Ayözen, Yunus Emre ; Tokdemir, Onur Behzat</creatorcontrib><description>Construction risk assessment (RA) based on expert knowledge and experience incorporates uncertainties that reduce its accuracy and effectiveness in implementing countermeasures. To support the construction of RA procedures and enhance associated decision-making processes, machine learning (ML) approaches have recently been investigated in the literature. Most ML approaches have difficulty processing dependency information from real-life construction datasets. This study developed a novel RA model that incorporates a graph convolutional network (GCN) to account for dependency information between construction accidents. For this purpose, the construction accident dataset was restructured into an accident network, wherein the accidents were connected based on the shared project type. The GCN decodes the construction accident network information to predict each construction activity’s severity outcome, resulting in a prediction accuracy of 94%. Compared with the benchmark feedforward network (FFN) model, the GCN demonstrated a higher prediction accuracy and better generalization ability. The developed GCN severity predictor allows construction professionals to identify high-risk construction accident scenarios while considering dependency based on the shared project type. Ultimately, understanding the relational information between construction accidents increases the representativeness of RA severity predictors, enriches ML models’ comprehension, and results in a more reliable safety model for construction professionals.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su142315906</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accidents ; Algorithms ; Artificial intelligence ; Connectivity ; Construction accidents &amp; safety ; Construction industry ; Construction site accidents ; Datasets ; Decision making ; Information processing ; Machine learning ; Methods ; Neural networks ; Occupational accidents ; Risk assessment ; Risk management ; Support vector machines ; Sustainability ; Wavelet transforms</subject><ispartof>Sustainability, 2022-11, Vol.14 (23), p.15906</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-9c2a828984ed0353c3e470e2943910cd67ce45ffe9656848e07ad1f9a33819163</citedby><cites>FETCH-LOGICAL-c399t-9c2a828984ed0353c3e470e2943910cd67ce45ffe9656848e07ad1f9a33819163</cites><orcidid>0000-0001-8734-6300 ; 0000-0002-4101-8560 ; 0000-0003-0974-1270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mostofi, Fatemeh</creatorcontrib><creatorcontrib>Toğan, Vedat</creatorcontrib><creatorcontrib>Ayözen, Yunus Emre</creatorcontrib><creatorcontrib>Tokdemir, Onur Behzat</creatorcontrib><title>Construction Safety Risk Model with Construction Accident Network: A Graph Convolutional Network Approach</title><title>Sustainability</title><description>Construction risk assessment (RA) based on expert knowledge and experience incorporates uncertainties that reduce its accuracy and effectiveness in implementing countermeasures. To support the construction of RA procedures and enhance associated decision-making processes, machine learning (ML) approaches have recently been investigated in the literature. Most ML approaches have difficulty processing dependency information from real-life construction datasets. This study developed a novel RA model that incorporates a graph convolutional network (GCN) to account for dependency information between construction accidents. For this purpose, the construction accident dataset was restructured into an accident network, wherein the accidents were connected based on the shared project type. The GCN decodes the construction accident network information to predict each construction activity’s severity outcome, resulting in a prediction accuracy of 94%. Compared with the benchmark feedforward network (FFN) model, the GCN demonstrated a higher prediction accuracy and better generalization ability. The developed GCN severity predictor allows construction professionals to identify high-risk construction accident scenarios while considering dependency based on the shared project type. Ultimately, understanding the relational information between construction accidents increases the representativeness of RA severity predictors, enriches ML models’ comprehension, and results in a more reliable safety model for construction professionals.</description><subject>Accidents</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Connectivity</subject><subject>Construction accidents &amp; safety</subject><subject>Construction industry</subject><subject>Construction site accidents</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Information processing</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Occupational accidents</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>Wavelet transforms</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpt0U1LwzAYB_AiCg7dyS8Q8CSymTRtk3grQ-dgKmx6DiF9umXrmpmkzn17O6ewgckhIfn988ITRVcE9ykV-M43JIkpSQXOTqJOjBnpEZzi04P5edT1foHbRikRJOtEZmBrH1yjg7E1mqoSwhZNjF-iZ1tAhTYmzNGRybU2BdQBvUDYWLe8RzkaOrX-YZ-2anZKVX_bKF-vnVV6fhmdlary0P0dL6L3x4e3wVNv_DocDfJxT1MhQk_oWPGYC55AgWlKNYWEYYhFQgXBusiYhiQtSxBZmvGEA2aqIKVQlPLdl-hFdL0_t732owEf5MI2rn2RlzFLeBuK-YGaqQqkqUsbnNIr47XMWcII55yxVvX_UW0vYGW0raE07fpR4OYo0JoAX2GmGu_laDo5trd7q5313kEp186slNtKguWuovKgovQbUrCQlw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Mostofi, Fatemeh</creator><creator>Toğan, Vedat</creator><creator>Ayözen, Yunus Emre</creator><creator>Tokdemir, Onur Behzat</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8734-6300</orcidid><orcidid>https://orcid.org/0000-0002-4101-8560</orcidid><orcidid>https://orcid.org/0000-0003-0974-1270</orcidid></search><sort><creationdate>20221101</creationdate><title>Construction Safety Risk Model with Construction Accident Network: A Graph Convolutional Network Approach</title><author>Mostofi, Fatemeh ; Toğan, Vedat ; Ayözen, Yunus Emre ; Tokdemir, Onur Behzat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-9c2a828984ed0353c3e470e2943910cd67ce45ffe9656848e07ad1f9a33819163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accidents</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Connectivity</topic><topic>Construction accidents &amp; safety</topic><topic>Construction industry</topic><topic>Construction site accidents</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Information processing</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Occupational accidents</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostofi, Fatemeh</creatorcontrib><creatorcontrib>Toğan, Vedat</creatorcontrib><creatorcontrib>Ayözen, Yunus Emre</creatorcontrib><creatorcontrib>Tokdemir, Onur Behzat</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostofi, Fatemeh</au><au>Toğan, Vedat</au><au>Ayözen, Yunus Emre</au><au>Tokdemir, Onur Behzat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction Safety Risk Model with Construction Accident Network: A Graph Convolutional Network Approach</atitle><jtitle>Sustainability</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>23</issue><spage>15906</spage><pages>15906-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Construction risk assessment (RA) based on expert knowledge and experience incorporates uncertainties that reduce its accuracy and effectiveness in implementing countermeasures. To support the construction of RA procedures and enhance associated decision-making processes, machine learning (ML) approaches have recently been investigated in the literature. Most ML approaches have difficulty processing dependency information from real-life construction datasets. This study developed a novel RA model that incorporates a graph convolutional network (GCN) to account for dependency information between construction accidents. For this purpose, the construction accident dataset was restructured into an accident network, wherein the accidents were connected based on the shared project type. The GCN decodes the construction accident network information to predict each construction activity’s severity outcome, resulting in a prediction accuracy of 94%. Compared with the benchmark feedforward network (FFN) model, the GCN demonstrated a higher prediction accuracy and better generalization ability. The developed GCN severity predictor allows construction professionals to identify high-risk construction accident scenarios while considering dependency based on the shared project type. Ultimately, understanding the relational information between construction accidents increases the representativeness of RA severity predictors, enriches ML models’ comprehension, and results in a more reliable safety model for construction professionals.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su142315906</doi><orcidid>https://orcid.org/0000-0001-8734-6300</orcidid><orcidid>https://orcid.org/0000-0002-4101-8560</orcidid><orcidid>https://orcid.org/0000-0003-0974-1270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-11, Vol.14 (23), p.15906
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2748568286
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accidents
Algorithms
Artificial intelligence
Connectivity
Construction accidents & safety
Construction industry
Construction site accidents
Datasets
Decision making
Information processing
Machine learning
Methods
Neural networks
Occupational accidents
Risk assessment
Risk management
Support vector machines
Sustainability
Wavelet transforms
title Construction Safety Risk Model with Construction Accident Network: A Graph Convolutional Network Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20Safety%20Risk%20Model%20with%20Construction%20Accident%20Network:%20A%20Graph%20Convolutional%20Network%20Approach&rft.jtitle=Sustainability&rft.au=Mostofi,%20Fatemeh&rft.date=2022-11-01&rft.volume=14&rft.issue=23&rft.spage=15906&rft.pages=15906-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su142315906&rft_dat=%3Cgale_proqu%3EA747188877%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748568286&rft_id=info:pmid/&rft_galeid=A747188877&rfr_iscdi=true