An Automated Machine Learning Engine with Inverse Analysis for Seismic Design of Dams

This paper proposes a systematic approach for the seismic design of 2D concrete dams. As opposed to the traditional design method which does not optimize the dam cross-section, the proposed design engine offers the optimal one based on the predefined constraints. A large database of about 24,000 sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-12, Vol.14 (23), p.3898
Hauptverfasser: Hariri-Ardebili, Mohammad Amin, Pourkamali-Anaraki, Farhad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a systematic approach for the seismic design of 2D concrete dams. As opposed to the traditional design method which does not optimize the dam cross-section, the proposed design engine offers the optimal one based on the predefined constraints. A large database of about 24,000 simulations is generated based on transient simulation of the dam-foundation-water system. The database includes over 150 various dam shapes, water levels, and material properties, as well as 160 different ground motion records. Automated machine learning (AutoML) is used to generate a surrogate model of dam response as a function of thirty variables. The accuracy of single- and multi-output surrogate models are compared, and the efficiency of the design engine for various settings is discussed. Next, a simple yet robust inverse analysis method is coupled with a multi-output surrogate model to design a hypothetical dam in the United States. Having the seismic hazard scenario, geological survey data, and also the concrete mix, the dam shape is estimated and compared to direct finite element simulation. The results show promising accuracy from the AutoML regression. Furthermore, the design shape from the inverse analysis is in good agreement with the design objectives and also the finite element simulations.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14233898