Strange Properties of Linear Reservoirs in the Infinitely Large Limit for Prediction of Continuous-Time Signals
Large linear reservoirs, while not necessarily of practical utility, might provide insight to large nonlinear reservoirs. Our study of large linear reservoirs in the context of improving predictive capabilities suggests that: one desires to be near the edge of instability; and random matrix theory g...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2023-02, Vol.190 (2), Article 32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of statistical physics |
container_volume | 190 |
creator | Hsu, Alexander Marzen, Sarah E. |
description | Large linear reservoirs, while not necessarily of practical utility, might provide insight to large nonlinear reservoirs. Our study of large linear reservoirs in the context of improving predictive capabilities suggests that: one desires to be near the edge of instability; and random matrix theory guarantees that the performance of large linear random matrices is only dependent on how weights in the weight matrix are chosen and not the individual weights. It also seems as though dynamic and static weights are quite different in performance. We comment on how these lessons may or may not apply to the large nonlinear reservoirs that are typically used for prediction applications. |
doi_str_mv | 10.1007/s10955-022-03040-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2748375972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729450214</galeid><sourcerecordid>A729450214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-1c09a2470d1f01ad13fd94b54a17ae2984582a3d63802cbd78961be2635a51653</originalsourceid><addsrcrecordid>eNp9kUtrGzEUhUVoIW6aP5CVIOtJr17WaBlMH4GBhjzWQp65chRsyZXkQvLrI2cC3RUtLkjnO1ydQ8gFgysGoL8VBkapDjjvQICE7vWELJjSvDNLJj6RBRyfpGbqlHwp5RkATG_UgqT7ml3cIL3NaY-5Biw0eTqEiC7TOyyY_6aQCw2R1iekN9GHGCpuX-jgcuOGsAuV-pSbA05hrCHFo8MqxRriIR1K9xB2SO_DJrpt-Uo--zbw_GOekccf3x9Wv7rh98-b1fXQjRJ47dgIxnGpYWIemJuY8JORayUd0w656aXquRPTUvTAx_Wk-_bPNfKlUE6xpRJn5HL23ef054Cl2ud0yMcNLNeyF1oZzZvqalZt3BZtiD61NMZ2JtyFMUX0od1fa26kAs5kA_gMjDmVktHbfQ47l18sA3tsws5N2Ba3fW_CvjZIzFBp4pZ1_rfLf6g3o9KL-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748375972</pqid></control><display><type>article</type><title>Strange Properties of Linear Reservoirs in the Infinitely Large Limit for Prediction of Continuous-Time Signals</title><source>SpringerLink Journals</source><creator>Hsu, Alexander ; Marzen, Sarah E.</creator><creatorcontrib>Hsu, Alexander ; Marzen, Sarah E.</creatorcontrib><description>Large linear reservoirs, while not necessarily of practical utility, might provide insight to large nonlinear reservoirs. Our study of large linear reservoirs in the context of improving predictive capabilities suggests that: one desires to be near the edge of instability; and random matrix theory guarantees that the performance of large linear random matrices is only dependent on how weights in the weight matrix are chosen and not the individual weights. It also seems as though dynamic and static weights are quite different in performance. We comment on how these lessons may or may not apply to the large nonlinear reservoirs that are typically used for prediction applications.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-022-03040-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematical analysis ; Mathematical and Computational Physics ; Matrix theory ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Reservoirs ; Statistical Physics and Dynamical Systems ; Theoretical ; Time signals</subject><ispartof>Journal of statistical physics, 2023-02, Vol.190 (2), Article 32</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-1c09a2470d1f01ad13fd94b54a17ae2984582a3d63802cbd78961be2635a51653</citedby><cites>FETCH-LOGICAL-c402t-1c09a2470d1f01ad13fd94b54a17ae2984582a3d63802cbd78961be2635a51653</cites><orcidid>0000-0001-5386-1101</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-022-03040-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-022-03040-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hsu, Alexander</creatorcontrib><creatorcontrib>Marzen, Sarah E.</creatorcontrib><title>Strange Properties of Linear Reservoirs in the Infinitely Large Limit for Prediction of Continuous-Time Signals</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Large linear reservoirs, while not necessarily of practical utility, might provide insight to large nonlinear reservoirs. Our study of large linear reservoirs in the context of improving predictive capabilities suggests that: one desires to be near the edge of instability; and random matrix theory guarantees that the performance of large linear random matrices is only dependent on how weights in the weight matrix are chosen and not the individual weights. It also seems as though dynamic and static weights are quite different in performance. We comment on how these lessons may or may not apply to the large nonlinear reservoirs that are typically used for prediction applications.</description><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Matrix theory</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Reservoirs</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Time signals</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtrGzEUhUVoIW6aP5CVIOtJr17WaBlMH4GBhjzWQp65chRsyZXkQvLrI2cC3RUtLkjnO1ydQ8gFgysGoL8VBkapDjjvQICE7vWELJjSvDNLJj6RBRyfpGbqlHwp5RkATG_UgqT7ml3cIL3NaY-5Biw0eTqEiC7TOyyY_6aQCw2R1iekN9GHGCpuX-jgcuOGsAuV-pSbA05hrCHFo8MqxRriIR1K9xB2SO_DJrpt-Uo--zbw_GOekccf3x9Wv7rh98-b1fXQjRJ47dgIxnGpYWIemJuY8JORayUd0w656aXquRPTUvTAx_Wk-_bPNfKlUE6xpRJn5HL23ef054Cl2ud0yMcNLNeyF1oZzZvqalZt3BZtiD61NMZ2JtyFMUX0od1fa26kAs5kA_gMjDmVktHbfQ47l18sA3tsws5N2Ba3fW_CvjZIzFBp4pZ1_rfLf6g3o9KL-A</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Hsu, Alexander</creator><creator>Marzen, Sarah E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5386-1101</orcidid></search><sort><creationdate>20230201</creationdate><title>Strange Properties of Linear Reservoirs in the Infinitely Large Limit for Prediction of Continuous-Time Signals</title><author>Hsu, Alexander ; Marzen, Sarah E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-1c09a2470d1f01ad13fd94b54a17ae2984582a3d63802cbd78961be2635a51653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Matrix theory</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Reservoirs</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Time signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Alexander</creatorcontrib><creatorcontrib>Marzen, Sarah E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Alexander</au><au>Marzen, Sarah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strange Properties of Linear Reservoirs in the Infinitely Large Limit for Prediction of Continuous-Time Signals</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>190</volume><issue>2</issue><artnum>32</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Large linear reservoirs, while not necessarily of practical utility, might provide insight to large nonlinear reservoirs. Our study of large linear reservoirs in the context of improving predictive capabilities suggests that: one desires to be near the edge of instability; and random matrix theory guarantees that the performance of large linear random matrices is only dependent on how weights in the weight matrix are chosen and not the individual weights. It also seems as though dynamic and static weights are quite different in performance. We comment on how these lessons may or may not apply to the large nonlinear reservoirs that are typically used for prediction applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-022-03040-z</doi><orcidid>https://orcid.org/0000-0001-5386-1101</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2023-02, Vol.190 (2), Article 32 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_proquest_journals_2748375972 |
source | SpringerLink Journals |
subjects | Mathematical analysis Mathematical and Computational Physics Matrix theory Physical Chemistry Physics Physics and Astronomy Quantum Physics Reservoirs Statistical Physics and Dynamical Systems Theoretical Time signals |
title | Strange Properties of Linear Reservoirs in the Infinitely Large Limit for Prediction of Continuous-Time Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A53%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strange%20Properties%20of%20Linear%20Reservoirs%20in%20the%20Infinitely%20Large%20Limit%20for%20Prediction%20of%20Continuous-Time%20Signals&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Hsu,%20Alexander&rft.date=2023-02-01&rft.volume=190&rft.issue=2&rft.artnum=32&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-022-03040-z&rft_dat=%3Cgale_proqu%3EA729450214%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748375972&rft_id=info:pmid/&rft_galeid=A729450214&rfr_iscdi=true |