Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid

Development of smart heating surfaces to enhance the performance of pool boiling heat transfer (BHT) has great significance in pool boiling applications. This paper presents the results of a study of improved pool BHT performance of R-134a on horizontal Al surfaces with microporous coating (diameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering thermophysics 2022-12, Vol.31 (4), p.720-736
Hauptverfasser: Majumder, B., Pingale, A. D., Katarkar, A. S., Belgamwar, S. U., Bhaumik, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 736
container_issue 4
container_start_page 720
container_title Journal of engineering thermophysics
container_volume 31
creator Majumder, B.
Pingale, A. D.
Katarkar, A. S.
Belgamwar, S. U.
Bhaumik, S.
description Development of smart heating surfaces to enhance the performance of pool boiling heat transfer (BHT) has great significance in pool boiling applications. This paper presents the results of a study of improved pool BHT performance of R-134a on horizontal Al surfaces with microporous coating (diameter = 9 mm) at saturation temperature. Microporous Al coatings were fabricated by electrodeposition using AlCl 3 /urea ionic liquid (IL). The effect of various electrolyte temperatures (30°C, 40°C, 50°C, and 60°C) on the morphology, microstructure, porosity, thickness, and surface roughness of Al coatings was investigated. The pool BHT experiments were performed for increase in the heat flux, varying from 9.51 kW/m 2  to 75.14 kW/m 2 . For the microporous Al coating electrodeposited at an electrolyte bath temperature of 30°C, 40°C, 50°C, and 60°C, the heat transfer coefficient (HTC) value was increased by 58%, 75%, 92%, and 109%, respectively, compared with the bare Al surface. The differences in the HTC augmentation for Al-coated surfaces can be explained by variations in the thickness of the microporous structure and in their surface characteristics such as porosity and surface roughness.
doi_str_mv 10.1134/S1810232822040166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2748348878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2748348878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-44c65bcec0894ca99023f2f78fa9d6838009075951c3cd5cc2fbdb7bbdf2f9fa3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxYMoWLQfwNuC59j9l2T3WEu1hYrFtuew2eyWLWk2nU0O_fZuqeBBnMsMzO-9x0ySPBH8Qgjjkw0RBFNGBaWYY5LnN8mISInTjDN6G-e4Ti_7-2QcwgHHYrQQRI6S89r7Br1617h2jxZG9WgLqg3WAFobsB6OqtUGeYu-0pilkG_Rh9PgOw9-CGjaoM0AVmkT0Lwxugdfm84H15saWfDHSMwaNtmBUWjpW6fRyp0GVz8md1Y1wYx_-kOye5tvZ4t09fm-nE1XqaY871POdZ5V2mgsJNcqXkWZpbYQVsk6F0xgLHGRyYxoputMa2qruiqqqo6UtIo9JM9X3w78aTChLw9-gDZGlrTggnEhChEpcqXiZSGAsWUH7qjgXBJcXp5c_nly1NCrJkS23Rv4df5f9A1eF32o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748348878</pqid></control><display><type>article</type><title>Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Majumder, B. ; Pingale, A. D. ; Katarkar, A. S. ; Belgamwar, S. U. ; Bhaumik, S.</creator><creatorcontrib>Majumder, B. ; Pingale, A. D. ; Katarkar, A. S. ; Belgamwar, S. U. ; Bhaumik, S.</creatorcontrib><description>Development of smart heating surfaces to enhance the performance of pool boiling heat transfer (BHT) has great significance in pool boiling applications. This paper presents the results of a study of improved pool BHT performance of R-134a on horizontal Al surfaces with microporous coating (diameter = 9 mm) at saturation temperature. Microporous Al coatings were fabricated by electrodeposition using AlCl 3 /urea ionic liquid (IL). The effect of various electrolyte temperatures (30°C, 40°C, 50°C, and 60°C) on the morphology, microstructure, porosity, thickness, and surface roughness of Al coatings was investigated. The pool BHT experiments were performed for increase in the heat flux, varying from 9.51 kW/m 2  to 75.14 kW/m 2 . For the microporous Al coating electrodeposited at an electrolyte bath temperature of 30°C, 40°C, 50°C, and 60°C, the heat transfer coefficient (HTC) value was increased by 58%, 75%, 92%, and 109%, respectively, compared with the bare Al surface. The differences in the HTC augmentation for Al-coated surfaces can be explained by variations in the thickness of the microporous structure and in their surface characteristics such as porosity and surface roughness.</description><identifier>ISSN: 1810-2328</identifier><identifier>EISSN: 1990-5432</identifier><identifier>DOI: 10.1134/S1810232822040166</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum chloride ; Aluminum coatings ; Boiling ; Diameters ; Electrodeposition ; Electrolytes ; Fluid- and Aerodynamics ; Heat flux ; Heat transfer ; Heat transfer coefficients ; Ionic liquids ; Physics ; Physics and Astronomy ; Porosity ; Surface properties ; Surface roughness ; Thermodynamics ; Thickness ; Ureas</subject><ispartof>Journal of engineering thermophysics, 2022-12, Vol.31 (4), p.720-736</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-44c65bcec0894ca99023f2f78fa9d6838009075951c3cd5cc2fbdb7bbdf2f9fa3</citedby><cites>FETCH-LOGICAL-c246t-44c65bcec0894ca99023f2f78fa9d6838009075951c3cd5cc2fbdb7bbdf2f9fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1810232822040166$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1810232822040166$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Majumder, B.</creatorcontrib><creatorcontrib>Pingale, A. D.</creatorcontrib><creatorcontrib>Katarkar, A. S.</creatorcontrib><creatorcontrib>Belgamwar, S. U.</creatorcontrib><creatorcontrib>Bhaumik, S.</creatorcontrib><title>Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid</title><title>Journal of engineering thermophysics</title><addtitle>J. Engin. Thermophys</addtitle><description>Development of smart heating surfaces to enhance the performance of pool boiling heat transfer (BHT) has great significance in pool boiling applications. This paper presents the results of a study of improved pool BHT performance of R-134a on horizontal Al surfaces with microporous coating (diameter = 9 mm) at saturation temperature. Microporous Al coatings were fabricated by electrodeposition using AlCl 3 /urea ionic liquid (IL). The effect of various electrolyte temperatures (30°C, 40°C, 50°C, and 60°C) on the morphology, microstructure, porosity, thickness, and surface roughness of Al coatings was investigated. The pool BHT experiments were performed for increase in the heat flux, varying from 9.51 kW/m 2  to 75.14 kW/m 2 . For the microporous Al coating electrodeposited at an electrolyte bath temperature of 30°C, 40°C, 50°C, and 60°C, the heat transfer coefficient (HTC) value was increased by 58%, 75%, 92%, and 109%, respectively, compared with the bare Al surface. The differences in the HTC augmentation for Al-coated surfaces can be explained by variations in the thickness of the microporous structure and in their surface characteristics such as porosity and surface roughness.</description><subject>Aluminum chloride</subject><subject>Aluminum coatings</subject><subject>Boiling</subject><subject>Diameters</subject><subject>Electrodeposition</subject><subject>Electrolytes</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Ionic liquids</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Porosity</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Thermodynamics</subject><subject>Thickness</subject><subject>Ureas</subject><issn>1810-2328</issn><issn>1990-5432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxYMoWLQfwNuC59j9l2T3WEu1hYrFtuew2eyWLWk2nU0O_fZuqeBBnMsMzO-9x0ySPBH8Qgjjkw0RBFNGBaWYY5LnN8mISInTjDN6G-e4Ti_7-2QcwgHHYrQQRI6S89r7Br1617h2jxZG9WgLqg3WAFobsB6OqtUGeYu-0pilkG_Rh9PgOw9-CGjaoM0AVmkT0Lwxugdfm84H15saWfDHSMwaNtmBUWjpW6fRyp0GVz8md1Y1wYx_-kOye5tvZ4t09fm-nE1XqaY871POdZ5V2mgsJNcqXkWZpbYQVsk6F0xgLHGRyYxoputMa2qruiqqqo6UtIo9JM9X3w78aTChLw9-gDZGlrTggnEhChEpcqXiZSGAsWUH7qjgXBJcXp5c_nly1NCrJkS23Rv4df5f9A1eF32o</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Majumder, B.</creator><creator>Pingale, A. D.</creator><creator>Katarkar, A. S.</creator><creator>Belgamwar, S. U.</creator><creator>Bhaumik, S.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid</title><author>Majumder, B. ; Pingale, A. D. ; Katarkar, A. S. ; Belgamwar, S. U. ; Bhaumik, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-44c65bcec0894ca99023f2f78fa9d6838009075951c3cd5cc2fbdb7bbdf2f9fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum chloride</topic><topic>Aluminum coatings</topic><topic>Boiling</topic><topic>Diameters</topic><topic>Electrodeposition</topic><topic>Electrolytes</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Ionic liquids</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Porosity</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Thermodynamics</topic><topic>Thickness</topic><topic>Ureas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majumder, B.</creatorcontrib><creatorcontrib>Pingale, A. D.</creatorcontrib><creatorcontrib>Katarkar, A. S.</creatorcontrib><creatorcontrib>Belgamwar, S. U.</creatorcontrib><creatorcontrib>Bhaumik, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of engineering thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majumder, B.</au><au>Pingale, A. D.</au><au>Katarkar, A. S.</au><au>Belgamwar, S. U.</au><au>Bhaumik, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid</atitle><jtitle>Journal of engineering thermophysics</jtitle><stitle>J. Engin. Thermophys</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>31</volume><issue>4</issue><spage>720</spage><epage>736</epage><pages>720-736</pages><issn>1810-2328</issn><eissn>1990-5432</eissn><abstract>Development of smart heating surfaces to enhance the performance of pool boiling heat transfer (BHT) has great significance in pool boiling applications. This paper presents the results of a study of improved pool BHT performance of R-134a on horizontal Al surfaces with microporous coating (diameter = 9 mm) at saturation temperature. Microporous Al coatings were fabricated by electrodeposition using AlCl 3 /urea ionic liquid (IL). The effect of various electrolyte temperatures (30°C, 40°C, 50°C, and 60°C) on the morphology, microstructure, porosity, thickness, and surface roughness of Al coatings was investigated. The pool BHT experiments were performed for increase in the heat flux, varying from 9.51 kW/m 2  to 75.14 kW/m 2 . For the microporous Al coating electrodeposited at an electrolyte bath temperature of 30°C, 40°C, 50°C, and 60°C, the heat transfer coefficient (HTC) value was increased by 58%, 75%, 92%, and 109%, respectively, compared with the bare Al surface. The differences in the HTC augmentation for Al-coated surfaces can be explained by variations in the thickness of the microporous structure and in their surface characteristics such as porosity and surface roughness.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1810232822040166</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1810-2328
ispartof Journal of engineering thermophysics, 2022-12, Vol.31 (4), p.720-736
issn 1810-2328
1990-5432
language eng
recordid cdi_proquest_journals_2748348878
source SpringerLink Journals - AutoHoldings
subjects Aluminum chloride
Aluminum coatings
Boiling
Diameters
Electrodeposition
Electrolytes
Fluid- and Aerodynamics
Heat flux
Heat transfer
Heat transfer coefficients
Ionic liquids
Physics
Physics and Astronomy
Porosity
Surface properties
Surface roughness
Thermodynamics
Thickness
Ureas
title Pool Boiling Heat Transfer Performance of R-134a on Microporous Al Surfaces Electrodeposited from AlCl3/Urea Ionic Liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pool%20Boiling%20Heat%20Transfer%20Performance%20of%20R-134a%20on%20Microporous%20Al%20Surfaces%20Electrodeposited%20from%20AlCl3/Urea%20Ionic%20Liquid&rft.jtitle=Journal%20of%20engineering%20thermophysics&rft.au=Majumder,%20B.&rft.date=2022-12-01&rft.volume=31&rft.issue=4&rft.spage=720&rft.epage=736&rft.pages=720-736&rft.issn=1810-2328&rft.eissn=1990-5432&rft_id=info:doi/10.1134/S1810232822040166&rft_dat=%3Cproquest_cross%3E2748348878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748348878&rft_id=info:pmid/&rfr_iscdi=true