Preparation and Properties of a Plasma-Sprayed Fe-Cr-B-C Coating

Fe-Cr-B-C wear-resistant coating was prepared by atmosphere plasma spraying. The effects of the spraying current, main gas flow, secondary gas flow, and spraying distance on the microstructure, hardness, and bonding strength of the coating were studied. The results show that the cross-section of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-11, Vol.12 (11), p.1716
Hauptverfasser: Lu, Jing, He, Jiayi, Chen, Dong, Sun, Chengchuan, Li, Yimin, Luo, Fenghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1716
container_title Coatings (Basel)
container_volume 12
creator Lu, Jing
He, Jiayi
Chen, Dong
Sun, Chengchuan
Li, Yimin
Luo, Fenghua
description Fe-Cr-B-C wear-resistant coating was prepared by atmosphere plasma spraying. The effects of the spraying current, main gas flow, secondary gas flow, and spraying distance on the microstructure, hardness, and bonding strength of the coating were studied. The results show that the cross-section of the coating is a typical lamellar structure. There are unmelted particles with high hardness in the Fe-Cr-B-C coating, and the hard phase particles are spherical and dispersed. As a result, the microhardness of the Fe-Cr-B-C coating is relatively uniform, within the range of 820~860 HV0.1. Spraying process parameters significantly affect the bonding strength of the coating, but have little effect on the microhardness. The matrix of the coating is an α-Fe phase and the hard phase is mainly a (Fe, Cr)2(B, C) phase and a (Fe, Cr)3(B, C) phase. Due to the spheroidized coating structure, the wear rate of the FeCrBC coating is only 0.62 × 10−5 mm3/Nm, which is 51% of the 304 stainless steel. The wear mechanism of the Fe-Cr-B-C coating is mainly abrasive wear and fatigue wear.
doi_str_mv 10.3390/coatings12111716
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2748279209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745498595</galeid><sourcerecordid>A745498595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-65ef6fa4a65d85c99b758b0b362a40f9b83cf2b1bb1799eca6fe59a264698ccc3</originalsourceid><addsrcrecordid>eNpdkM1Lw0AQxRdRsNTePQY8b92P7GbnZg1WhYIF9Rwmm92S0mbjbnrof28kHsSZwwzD-82DR8gtZ0spgd3bgEPb7RIXnPOC6wsyE6wAqnMuLv_s12SR0p6NBVwaDjPysI2uxzjiocuwa7JtDL2LQ-tSFnyG2faA6Yj0vY94dk22drSM9JGWWTl53pArj4fkFr9zTj7XTx_lC928Pb-Wqw21kqmBauW89pijVo1RFqAulKlZLbXAnHmojbRe1LyueQHgLGrvFKDQuQZjrZVzcjf97WP4Ork0VPtwit1oWYkiN6IAwWBULSfVDg-uajsfhoh27MYdWxs659vxvipylYNRoEaATYCNIaXofNXH9ojxXHFW_WRb_c9WfgPAX2x4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748279209</pqid></control><display><type>article</type><title>Preparation and Properties of a Plasma-Sprayed Fe-Cr-B-C Coating</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Lu, Jing ; He, Jiayi ; Chen, Dong ; Sun, Chengchuan ; Li, Yimin ; Luo, Fenghua</creator><creatorcontrib>Lu, Jing ; He, Jiayi ; Chen, Dong ; Sun, Chengchuan ; Li, Yimin ; Luo, Fenghua</creatorcontrib><description>Fe-Cr-B-C wear-resistant coating was prepared by atmosphere plasma spraying. The effects of the spraying current, main gas flow, secondary gas flow, and spraying distance on the microstructure, hardness, and bonding strength of the coating were studied. The results show that the cross-section of the coating is a typical lamellar structure. There are unmelted particles with high hardness in the Fe-Cr-B-C coating, and the hard phase particles are spherical and dispersed. As a result, the microhardness of the Fe-Cr-B-C coating is relatively uniform, within the range of 820~860 HV0.1. Spraying process parameters significantly affect the bonding strength of the coating, but have little effect on the microhardness. The matrix of the coating is an α-Fe phase and the hard phase is mainly a (Fe, Cr)2(B, C) phase and a (Fe, Cr)3(B, C) phase. Due to the spheroidized coating structure, the wear rate of the FeCrBC coating is only 0.62 × 10−5 mm3/Nm, which is 51% of the 304 stainless steel. The wear mechanism of the Fe-Cr-B-C coating is mainly abrasive wear and fatigue wear.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12111716</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Abrasive wear ; Alpha iron ; Bonding strength ; Chromium ; Coatings ; Fatigue wear ; Friction ; Gas flow ; Lamellar structure ; Metal fatigue ; Microhardness ; Morphology ; Plasma ; Plasma spraying ; Process parameters ; Protective coatings ; Spheroidizing ; Stainless steel ; Stainless steels ; Wear mechanisms ; Wear rate ; Wear resistance</subject><ispartof>Coatings (Basel), 2022-11, Vol.12 (11), p.1716</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-65ef6fa4a65d85c99b758b0b362a40f9b83cf2b1bb1799eca6fe59a264698ccc3</cites><orcidid>0000-0003-2294-5390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>He, Jiayi</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Sun, Chengchuan</creatorcontrib><creatorcontrib>Li, Yimin</creatorcontrib><creatorcontrib>Luo, Fenghua</creatorcontrib><title>Preparation and Properties of a Plasma-Sprayed Fe-Cr-B-C Coating</title><title>Coatings (Basel)</title><description>Fe-Cr-B-C wear-resistant coating was prepared by atmosphere plasma spraying. The effects of the spraying current, main gas flow, secondary gas flow, and spraying distance on the microstructure, hardness, and bonding strength of the coating were studied. The results show that the cross-section of the coating is a typical lamellar structure. There are unmelted particles with high hardness in the Fe-Cr-B-C coating, and the hard phase particles are spherical and dispersed. As a result, the microhardness of the Fe-Cr-B-C coating is relatively uniform, within the range of 820~860 HV0.1. Spraying process parameters significantly affect the bonding strength of the coating, but have little effect on the microhardness. The matrix of the coating is an α-Fe phase and the hard phase is mainly a (Fe, Cr)2(B, C) phase and a (Fe, Cr)3(B, C) phase. Due to the spheroidized coating structure, the wear rate of the FeCrBC coating is only 0.62 × 10−5 mm3/Nm, which is 51% of the 304 stainless steel. The wear mechanism of the Fe-Cr-B-C coating is mainly abrasive wear and fatigue wear.</description><subject>Abrasive wear</subject><subject>Alpha iron</subject><subject>Bonding strength</subject><subject>Chromium</subject><subject>Coatings</subject><subject>Fatigue wear</subject><subject>Friction</subject><subject>Gas flow</subject><subject>Lamellar structure</subject><subject>Metal fatigue</subject><subject>Microhardness</subject><subject>Morphology</subject><subject>Plasma</subject><subject>Plasma spraying</subject><subject>Process parameters</subject><subject>Protective coatings</subject><subject>Spheroidizing</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Wear mechanisms</subject><subject>Wear rate</subject><subject>Wear resistance</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkM1Lw0AQxRdRsNTePQY8b92P7GbnZg1WhYIF9Rwmm92S0mbjbnrof28kHsSZwwzD-82DR8gtZ0spgd3bgEPb7RIXnPOC6wsyE6wAqnMuLv_s12SR0p6NBVwaDjPysI2uxzjiocuwa7JtDL2LQ-tSFnyG2faA6Yj0vY94dk22drSM9JGWWTl53pArj4fkFr9zTj7XTx_lC928Pb-Wqw21kqmBauW89pijVo1RFqAulKlZLbXAnHmojbRe1LyueQHgLGrvFKDQuQZjrZVzcjf97WP4Ork0VPtwit1oWYkiN6IAwWBULSfVDg-uajsfhoh27MYdWxs659vxvipylYNRoEaATYCNIaXofNXH9ojxXHFW_WRb_c9WfgPAX2x4</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Lu, Jing</creator><creator>He, Jiayi</creator><creator>Chen, Dong</creator><creator>Sun, Chengchuan</creator><creator>Li, Yimin</creator><creator>Luo, Fenghua</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2294-5390</orcidid></search><sort><creationdate>20221101</creationdate><title>Preparation and Properties of a Plasma-Sprayed Fe-Cr-B-C Coating</title><author>Lu, Jing ; He, Jiayi ; Chen, Dong ; Sun, Chengchuan ; Li, Yimin ; Luo, Fenghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-65ef6fa4a65d85c99b758b0b362a40f9b83cf2b1bb1799eca6fe59a264698ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abrasive wear</topic><topic>Alpha iron</topic><topic>Bonding strength</topic><topic>Chromium</topic><topic>Coatings</topic><topic>Fatigue wear</topic><topic>Friction</topic><topic>Gas flow</topic><topic>Lamellar structure</topic><topic>Metal fatigue</topic><topic>Microhardness</topic><topic>Morphology</topic><topic>Plasma</topic><topic>Plasma spraying</topic><topic>Process parameters</topic><topic>Protective coatings</topic><topic>Spheroidizing</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Wear mechanisms</topic><topic>Wear rate</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jing</creatorcontrib><creatorcontrib>He, Jiayi</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Sun, Chengchuan</creatorcontrib><creatorcontrib>Li, Yimin</creatorcontrib><creatorcontrib>Luo, Fenghua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jing</au><au>He, Jiayi</au><au>Chen, Dong</au><au>Sun, Chengchuan</au><au>Li, Yimin</au><au>Luo, Fenghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and Properties of a Plasma-Sprayed Fe-Cr-B-C Coating</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>11</issue><spage>1716</spage><pages>1716-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Fe-Cr-B-C wear-resistant coating was prepared by atmosphere plasma spraying. The effects of the spraying current, main gas flow, secondary gas flow, and spraying distance on the microstructure, hardness, and bonding strength of the coating were studied. The results show that the cross-section of the coating is a typical lamellar structure. There are unmelted particles with high hardness in the Fe-Cr-B-C coating, and the hard phase particles are spherical and dispersed. As a result, the microhardness of the Fe-Cr-B-C coating is relatively uniform, within the range of 820~860 HV0.1. Spraying process parameters significantly affect the bonding strength of the coating, but have little effect on the microhardness. The matrix of the coating is an α-Fe phase and the hard phase is mainly a (Fe, Cr)2(B, C) phase and a (Fe, Cr)3(B, C) phase. Due to the spheroidized coating structure, the wear rate of the FeCrBC coating is only 0.62 × 10−5 mm3/Nm, which is 51% of the 304 stainless steel. The wear mechanism of the Fe-Cr-B-C coating is mainly abrasive wear and fatigue wear.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12111716</doi><orcidid>https://orcid.org/0000-0003-2294-5390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-11, Vol.12 (11), p.1716
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2748279209
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Abrasive wear
Alpha iron
Bonding strength
Chromium
Coatings
Fatigue wear
Friction
Gas flow
Lamellar structure
Metal fatigue
Microhardness
Morphology
Plasma
Plasma spraying
Process parameters
Protective coatings
Spheroidizing
Stainless steel
Stainless steels
Wear mechanisms
Wear rate
Wear resistance
title Preparation and Properties of a Plasma-Sprayed Fe-Cr-B-C Coating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20Properties%20of%20a%20Plasma-Sprayed%20Fe-Cr-B-C%20Coating&rft.jtitle=Coatings%20(Basel)&rft.au=Lu,%20Jing&rft.date=2022-11-01&rft.volume=12&rft.issue=11&rft.spage=1716&rft.pages=1716-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12111716&rft_dat=%3Cgale_proqu%3EA745498595%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748279209&rft_id=info:pmid/&rft_galeid=A745498595&rfr_iscdi=true