ATS Methods: Nonparametric Regression for Non-Gaussian Data

ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T&qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1993-09, Vol.88 (423), p.821-835
Hauptverfasser: Cleveland, William S., Mallows, Colin L., McRae, Jean E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 423
container_start_page 821
container_title Journal of the American Statistical Association
container_volume 88
creator Cleveland, William S.
Mallows, Colin L.
McRae, Jean E.
description ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T"), and finally the result is smoothed ("S") using a nonparametric regression procedure. ATS methods are quite broad in terms of applications; in this article we show how they can be used for fitting a surface when the response is binary, for estimating density, and for estimating the spectrum of a time series. We also present some theoretical investigations that give guidance on how to choose the amount of averaging and how efficient the methods are.
doi_str_mv 10.1080/01621459.1993.10476347
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_274797195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2290771</jstor_id><sourcerecordid>2290771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1fbd9f3e57401a111ff89304e19c3657b1d8aa3d4faf0ea6494473dd15f2ca1e3</originalsourceid><addsrcrecordid>eNqFkNtKxDAQhoMouB5eQYqId9VMJ20avVo8gwfwAN6FsU20S7dZky7i25uyrog3zs3AzDc_w8fYDvAD4CU_5FBkIHJ1AEphHAlZoJArbAQ5yjST4nmVjQYoHah1thHChMeSZTlix-PHh-TG9G-uDkfJretm5Glqet9Uyb159SaExnWJdX5Yphc0jwPqklPqaYutWWqD2f7um-zp_Ozx5DK9vru4OhlfpxXKvE_BvtTKosml4EAAYG2pkAsDqsIily9Ql0RYC0uWGyqEEkJiXUNus4rA4CbbX-TOvHufm9DraRMq07bUGTcPGkshFOYYwd0_4MTNfRd_01GDVBJUHqFiAVXeheCN1TPfTMl_auB6EKqXQvUgVC-FxsO973QKFbXWU1c14ecapUChfmGT0Dv_OzxDLnWWKS4lRGy8wJouyp3Sh_NtrXv6bJ1fRuM_H30BKkiTZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>274797195</pqid></control><display><type>article</type><title>ATS Methods: Nonparametric Regression for Non-Gaussian Data</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><creator>Cleveland, William S. ; Mallows, Colin L. ; McRae, Jean E.</creator><creatorcontrib>Cleveland, William S. ; Mallows, Colin L. ; McRae, Jean E.</creatorcontrib><description>ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T"), and finally the result is smoothed ("S") using a nonparametric regression procedure. ATS methods are quite broad in terms of applications; in this article we show how they can be used for fitting a surface when the response is binary, for estimating density, and for estimating the spectrum of a time series. We also present some theoretical investigations that give guidance on how to choose the amount of averaging and how efficient the methods are.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1993.10476347</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria, VA: Taylor &amp; Francis Group</publisher><subject>Data smoothing ; Density estimation ; Estimation bias ; Estimation methods ; Exact sciences and technology ; Linear regression ; Loess ; Logarithms ; Mathematics ; Nonhomogeneous Poisson processes ; Nonparametric inference ; Probability and statistics ; Regression analysis ; Sciences and techniques of general use ; Spectrum estimation ; Statistical variance ; Statistics ; Telephones ; Theory and Methods ; Time series</subject><ispartof>Journal of the American Statistical Association, 1993-09, Vol.88 (423), p.821-835</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1993</rights><rights>Copyright 1993 American Statistical Association</rights><rights>1994 INIST-CNRS</rights><rights>Copyright American Statistical Association Sep 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1fbd9f3e57401a111ff89304e19c3657b1d8aa3d4faf0ea6494473dd15f2ca1e3</citedby><cites>FETCH-LOGICAL-c375t-1fbd9f3e57401a111ff89304e19c3657b1d8aa3d4faf0ea6494473dd15f2ca1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2290771$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2290771$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3743497$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cleveland, William S.</creatorcontrib><creatorcontrib>Mallows, Colin L.</creatorcontrib><creatorcontrib>McRae, Jean E.</creatorcontrib><title>ATS Methods: Nonparametric Regression for Non-Gaussian Data</title><title>Journal of the American Statistical Association</title><description>ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T"), and finally the result is smoothed ("S") using a nonparametric regression procedure. ATS methods are quite broad in terms of applications; in this article we show how they can be used for fitting a surface when the response is binary, for estimating density, and for estimating the spectrum of a time series. We also present some theoretical investigations that give guidance on how to choose the amount of averaging and how efficient the methods are.</description><subject>Data smoothing</subject><subject>Density estimation</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Linear regression</subject><subject>Loess</subject><subject>Logarithms</subject><subject>Mathematics</subject><subject>Nonhomogeneous Poisson processes</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Spectrum estimation</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Telephones</subject><subject>Theory and Methods</subject><subject>Time series</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkNtKxDAQhoMouB5eQYqId9VMJ20avVo8gwfwAN6FsU20S7dZky7i25uyrog3zs3AzDc_w8fYDvAD4CU_5FBkIHJ1AEphHAlZoJArbAQ5yjST4nmVjQYoHah1thHChMeSZTlix-PHh-TG9G-uDkfJretm5Glqet9Uyb159SaExnWJdX5Yphc0jwPqklPqaYutWWqD2f7um-zp_Ozx5DK9vru4OhlfpxXKvE_BvtTKosml4EAAYG2pkAsDqsIily9Ql0RYC0uWGyqEEkJiXUNus4rA4CbbX-TOvHufm9DraRMq07bUGTcPGkshFOYYwd0_4MTNfRd_01GDVBJUHqFiAVXeheCN1TPfTMl_auB6EKqXQvUgVC-FxsO973QKFbXWU1c14ecapUChfmGT0Dv_OzxDLnWWKS4lRGy8wJouyp3Sh_NtrXv6bJ1fRuM_H30BKkiTZg</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Cleveland, William S.</creator><creator>Mallows, Colin L.</creator><creator>McRae, Jean E.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><general>Taylor &amp; Francis Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8BJ</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K9-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19930901</creationdate><title>ATS Methods: Nonparametric Regression for Non-Gaussian Data</title><author>Cleveland, William S. ; Mallows, Colin L. ; McRae, Jean E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1fbd9f3e57401a111ff89304e19c3657b1d8aa3d4faf0ea6494473dd15f2ca1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Data smoothing</topic><topic>Density estimation</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Linear regression</topic><topic>Loess</topic><topic>Logarithms</topic><topic>Mathematics</topic><topic>Nonhomogeneous Poisson processes</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Spectrum estimation</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Telephones</topic><topic>Theory and Methods</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cleveland, William S.</creatorcontrib><creatorcontrib>Mallows, Colin L.</creatorcontrib><creatorcontrib>McRae, Jean E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM global</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cleveland, William S.</au><au>Mallows, Colin L.</au><au>McRae, Jean E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ATS Methods: Nonparametric Regression for Non-Gaussian Data</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1993-09-01</date><risdate>1993</risdate><volume>88</volume><issue>423</issue><spage>821</spage><epage>835</epage><pages>821-835</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T"), and finally the result is smoothed ("S") using a nonparametric regression procedure. ATS methods are quite broad in terms of applications; in this article we show how they can be used for fitting a surface when the response is binary, for estimating density, and for estimating the spectrum of a time series. We also present some theoretical investigations that give guidance on how to choose the amount of averaging and how efficient the methods are.</abstract><cop>Alexandria, VA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1993.10476347</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1993-09, Vol.88 (423), p.821-835
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_274797195
source Jstor Complete Legacy; JSTOR Mathematics and Statistics
subjects Data smoothing
Density estimation
Estimation bias
Estimation methods
Exact sciences and technology
Linear regression
Loess
Logarithms
Mathematics
Nonhomogeneous Poisson processes
Nonparametric inference
Probability and statistics
Regression analysis
Sciences and techniques of general use
Spectrum estimation
Statistical variance
Statistics
Telephones
Theory and Methods
Time series
title ATS Methods: Nonparametric Regression for Non-Gaussian Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ATS%20Methods:%20Nonparametric%20Regression%20for%20Non-Gaussian%20Data&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Cleveland,%20William%20S.&rft.date=1993-09-01&rft.volume=88&rft.issue=423&rft.spage=821&rft.epage=835&rft.pages=821-835&rft.issn=0162-1459&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.1993.10476347&rft_dat=%3Cjstor_proqu%3E2290771%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=274797195&rft_id=info:pmid/&rft_jstor_id=2290771&rfr_iscdi=true