ATS Methods: Nonparametric Regression for Non-Gaussian Data
ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T&qu...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 1993-09, Vol.88 (423), p.821-835 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T"), and finally the result is smoothed ("S") using a nonparametric regression procedure. ATS methods are quite broad in terms of applications; in this article we show how they can be used for fitting a surface when the response is binary, for estimating density, and for estimating the spectrum of a time series. We also present some theoretical investigations that give guidance on how to choose the amount of averaging and how efficient the methods are. |
---|---|
ISSN: | 0162-1459 1537-274X |
DOI: | 10.1080/01621459.1993.10476347 |