ATS Methods: Nonparametric Regression for Non-Gaussian Data

ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T&qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 1993-09, Vol.88 (423), p.821-835
Hauptverfasser: Cleveland, William S., Mallows, Colin L., McRae, Jean E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ATS methods provide an approach to fitting curves and surfaces to data using nonparametric regression when distributions are not necessarily Gaussian. First, a small amount of local averaging (the "A" in ATS) is carried out, then a variance-stabilizing transformation is applied ("T"), and finally the result is smoothed ("S") using a nonparametric regression procedure. ATS methods are quite broad in terms of applications; in this article we show how they can be used for fitting a surface when the response is binary, for estimating density, and for estimating the spectrum of a time series. We also present some theoretical investigations that give guidance on how to choose the amount of averaging and how efficient the methods are.
ISSN:0162-1459
1537-274X
DOI:10.1080/01621459.1993.10476347