A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method
Low‐temperature intercessions are the most proficient technique to control the particle size in the nanometres range with low agglomeration. Herein, BaTiO3 (BT) nanoparticles (NPs) are prepared at low temperatures by using the sol‐hydrothermal technique. An X‐ray diffraction (XRD) pattern of the pow...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2022-12, Vol.219 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 219 |
creator | Kumar, Dushyant Kumar, Sahil Kumar, Shammi Thakur, Nagesh Shandilya, Mamta |
description | Low‐temperature intercessions are the most proficient technique to control the particle size in the nanometres range with low agglomeration. Herein, BaTiO3 (BT) nanoparticles (NPs) are prepared at low temperatures by using the sol‐hydrothermal technique. An X‐ray diffraction (XRD) pattern of the powder signifies the pure tetragonal phase, and the average crystallite size (43.2 nm) is calculated using different methods: Scherrer's, uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) analysis, and the structure is refined by Rietveld refinement method with a good fit value (χ2 = 1.66). Spherical and uniform surface morphology is counted up for BT NPs. Under suitable conditions, BT NPs can be prepared with an average particle size of ≈115 ± 10 nm. However, after sintering, the average grain size (335 ± 10 nm) of the BaTiO3 nanopowder is found to increase with dense grain boundaries. The dielectric behavior of the sample is analyzed with the variation of frequency at different temperatures. The effect of grain and grain boundary on the electrical properties of the material is also investigated by using complex impedance spectroscopy (CIS).
The high‐temperature methodology is less controlled in the crystallization, and the morphology of the products lacks uniformity, controllability, and dispersibility, which dramatically decline their functional properties. Whereas the low‐quality ceramic powder reduces the device quality and affects industrial demand. To overcome these problems, using the sol‐hydrothermal technique is a practical and energy‐efficient way to produce very pure and homogenous powder. |
doi_str_mv | 10.1002/pssa.202200238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2747942506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747942506</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-f513b46c232d02db16f02c1a6f3d5d83e48215eca80953cda12247ecc6a285ef3</originalsourceid><addsrcrecordid>eNo9kM1KAzEcxIMoWKtXzwHPW5N_PjZ7rEVboVqx1WtIkyzdsm3W7C5lbz6Cz-iT2FLpaWZgmIEfQreUDCghcF_VtRkAAdgHps5QjyoJiWQ0Oz95Qi7RVV2vCeGCp7SH3of408cOT8MOL_ym8tE0bfR4HMOuWeGQ4wezKGYMv5ptqExsClv6Gi87PA_l7_fPpHMxNCsfN6bEL75ZBXeNLnJT1v7mX_vo4-lxMZok09n4eTScJhUwppJcULbk0gIDR8AtqcwJWGpkzpxwinmugApvjSKZYNYZCsBTb600oITPWR_dHXerGL5aXzd6Hdq43V9qSHmacRBE7lvZsbUrSt_pKhYbEztNiT5A0wdo-gRNv83nw1Nif92wYyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747942506</pqid></control><display><type>article</type><title>A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method</title><source>Wiley-Blackwell Journals</source><creator>Kumar, Dushyant ; Kumar, Sahil ; Kumar, Shammi ; Thakur, Nagesh ; Shandilya, Mamta</creator><creatorcontrib>Kumar, Dushyant ; Kumar, Sahil ; Kumar, Shammi ; Thakur, Nagesh ; Shandilya, Mamta</creatorcontrib><description>Low‐temperature intercessions are the most proficient technique to control the particle size in the nanometres range with low agglomeration. Herein, BaTiO3 (BT) nanoparticles (NPs) are prepared at low temperatures by using the sol‐hydrothermal technique. An X‐ray diffraction (XRD) pattern of the powder signifies the pure tetragonal phase, and the average crystallite size (43.2 nm) is calculated using different methods: Scherrer's, uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) analysis, and the structure is refined by Rietveld refinement method with a good fit value (χ2 = 1.66). Spherical and uniform surface morphology is counted up for BT NPs. Under suitable conditions, BT NPs can be prepared with an average particle size of ≈115 ± 10 nm. However, after sintering, the average grain size (335 ± 10 nm) of the BaTiO3 nanopowder is found to increase with dense grain boundaries. The dielectric behavior of the sample is analyzed with the variation of frequency at different temperatures. The effect of grain and grain boundary on the electrical properties of the material is also investigated by using complex impedance spectroscopy (CIS).
The high‐temperature methodology is less controlled in the crystallization, and the morphology of the products lacks uniformity, controllability, and dispersibility, which dramatically decline their functional properties. Whereas the low‐quality ceramic powder reduces the device quality and affects industrial demand. To overcome these problems, using the sol‐hydrothermal technique is a practical and energy‐efficient way to produce very pure and homogenous powder.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.202200238</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barium titanates ; Chi-square test ; Cole–Cole plot ; Crystallites ; Deformation ; Diffraction patterns ; Electrical properties ; Frequency variation ; Grain boundaries ; Grain size ; impedance spectroscopy ; Low temperature ; Nanoparticles ; Particle size ; Rietveld method ; Sintering (powder metallurgy) ; sol-hydrothermal routes ; Statistical tests</subject><ispartof>Physica status solidi. A, Applications and materials science, 2022-12, Vol.219 (23), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3129-6396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.202200238$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.202200238$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kumar, Dushyant</creatorcontrib><creatorcontrib>Kumar, Sahil</creatorcontrib><creatorcontrib>Kumar, Shammi</creatorcontrib><creatorcontrib>Thakur, Nagesh</creatorcontrib><creatorcontrib>Shandilya, Mamta</creatorcontrib><title>A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method</title><title>Physica status solidi. A, Applications and materials science</title><description>Low‐temperature intercessions are the most proficient technique to control the particle size in the nanometres range with low agglomeration. Herein, BaTiO3 (BT) nanoparticles (NPs) are prepared at low temperatures by using the sol‐hydrothermal technique. An X‐ray diffraction (XRD) pattern of the powder signifies the pure tetragonal phase, and the average crystallite size (43.2 nm) is calculated using different methods: Scherrer's, uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) analysis, and the structure is refined by Rietveld refinement method with a good fit value (χ2 = 1.66). Spherical and uniform surface morphology is counted up for BT NPs. Under suitable conditions, BT NPs can be prepared with an average particle size of ≈115 ± 10 nm. However, after sintering, the average grain size (335 ± 10 nm) of the BaTiO3 nanopowder is found to increase with dense grain boundaries. The dielectric behavior of the sample is analyzed with the variation of frequency at different temperatures. The effect of grain and grain boundary on the electrical properties of the material is also investigated by using complex impedance spectroscopy (CIS).
The high‐temperature methodology is less controlled in the crystallization, and the morphology of the products lacks uniformity, controllability, and dispersibility, which dramatically decline their functional properties. Whereas the low‐quality ceramic powder reduces the device quality and affects industrial demand. To overcome these problems, using the sol‐hydrothermal technique is a practical and energy‐efficient way to produce very pure and homogenous powder.</description><subject>Barium titanates</subject><subject>Chi-square test</subject><subject>Cole–Cole plot</subject><subject>Crystallites</subject><subject>Deformation</subject><subject>Diffraction patterns</subject><subject>Electrical properties</subject><subject>Frequency variation</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>impedance spectroscopy</subject><subject>Low temperature</subject><subject>Nanoparticles</subject><subject>Particle size</subject><subject>Rietveld method</subject><subject>Sintering (powder metallurgy)</subject><subject>sol-hydrothermal routes</subject><subject>Statistical tests</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEcxIMoWKtXzwHPW5N_PjZ7rEVboVqx1WtIkyzdsm3W7C5lbz6Cz-iT2FLpaWZgmIEfQreUDCghcF_VtRkAAdgHps5QjyoJiWQ0Oz95Qi7RVV2vCeGCp7SH3of408cOT8MOL_ym8tE0bfR4HMOuWeGQ4wezKGYMv5ptqExsClv6Gi87PA_l7_fPpHMxNCsfN6bEL75ZBXeNLnJT1v7mX_vo4-lxMZok09n4eTScJhUwppJcULbk0gIDR8AtqcwJWGpkzpxwinmugApvjSKZYNYZCsBTb600oITPWR_dHXerGL5aXzd6Hdq43V9qSHmacRBE7lvZsbUrSt_pKhYbEztNiT5A0wdo-gRNv83nw1Nif92wYyM</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Kumar, Dushyant</creator><creator>Kumar, Sahil</creator><creator>Kumar, Shammi</creator><creator>Thakur, Nagesh</creator><creator>Shandilya, Mamta</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3129-6396</orcidid></search><sort><creationdate>202212</creationdate><title>A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method</title><author>Kumar, Dushyant ; Kumar, Sahil ; Kumar, Shammi ; Thakur, Nagesh ; Shandilya, Mamta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-f513b46c232d02db16f02c1a6f3d5d83e48215eca80953cda12247ecc6a285ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barium titanates</topic><topic>Chi-square test</topic><topic>Cole–Cole plot</topic><topic>Crystallites</topic><topic>Deformation</topic><topic>Diffraction patterns</topic><topic>Electrical properties</topic><topic>Frequency variation</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>impedance spectroscopy</topic><topic>Low temperature</topic><topic>Nanoparticles</topic><topic>Particle size</topic><topic>Rietveld method</topic><topic>Sintering (powder metallurgy)</topic><topic>sol-hydrothermal routes</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Dushyant</creatorcontrib><creatorcontrib>Kumar, Sahil</creatorcontrib><creatorcontrib>Kumar, Shammi</creatorcontrib><creatorcontrib>Thakur, Nagesh</creatorcontrib><creatorcontrib>Shandilya, Mamta</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Dushyant</au><au>Kumar, Sahil</au><au>Kumar, Shammi</au><au>Thakur, Nagesh</au><au>Shandilya, Mamta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2022-12</date><risdate>2022</risdate><volume>219</volume><issue>23</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Low‐temperature intercessions are the most proficient technique to control the particle size in the nanometres range with low agglomeration. Herein, BaTiO3 (BT) nanoparticles (NPs) are prepared at low temperatures by using the sol‐hydrothermal technique. An X‐ray diffraction (XRD) pattern of the powder signifies the pure tetragonal phase, and the average crystallite size (43.2 nm) is calculated using different methods: Scherrer's, uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) analysis, and the structure is refined by Rietveld refinement method with a good fit value (χ2 = 1.66). Spherical and uniform surface morphology is counted up for BT NPs. Under suitable conditions, BT NPs can be prepared with an average particle size of ≈115 ± 10 nm. However, after sintering, the average grain size (335 ± 10 nm) of the BaTiO3 nanopowder is found to increase with dense grain boundaries. The dielectric behavior of the sample is analyzed with the variation of frequency at different temperatures. The effect of grain and grain boundary on the electrical properties of the material is also investigated by using complex impedance spectroscopy (CIS).
The high‐temperature methodology is less controlled in the crystallization, and the morphology of the products lacks uniformity, controllability, and dispersibility, which dramatically decline their functional properties. Whereas the low‐quality ceramic powder reduces the device quality and affects industrial demand. To overcome these problems, using the sol‐hydrothermal technique is a practical and energy‐efficient way to produce very pure and homogenous powder.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.202200238</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3129-6396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2022-12, Vol.219 (23), p.n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_journals_2747942506 |
source | Wiley-Blackwell Journals |
subjects | Barium titanates Chi-square test Cole–Cole plot Crystallites Deformation Diffraction patterns Electrical properties Frequency variation Grain boundaries Grain size impedance spectroscopy Low temperature Nanoparticles Particle size Rietveld method Sintering (powder metallurgy) sol-hydrothermal routes Statistical tests |
title | A Very Low Temperature Growth of BaTiO3 Nanoparticles by Sol‐Hydrothermal Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Very%20Low%20Temperature%20Growth%20of%20BaTiO3%20Nanoparticles%20by%20Sol%E2%80%90Hydrothermal%20Method&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Kumar,%20Dushyant&rft.date=2022-12&rft.volume=219&rft.issue=23&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.202200238&rft_dat=%3Cproquest_wiley%3E2747942506%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747942506&rft_id=info:pmid/&rfr_iscdi=true |