Willmore deformations between minimal surfaces in Hn+2 and Sn+2
In this paper we show that locally there exists a Willmore deformation between minimal surfaces in S n + 2 and minimal surfaces in H n + 2 , i.e., there exists a smooth family of Willmore surfaces { y t : U ~ → S n + 2 , t ∈ [ 0 , 2 π ) } such that ( y t ) | t = 0 is conformally equivalent to a mini...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2023, Vol.303 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematische Zeitschrift |
container_volume | 303 |
creator | Wang, Changping Wang, Peng |
description | In this paper we show that locally there exists a Willmore deformation between minimal surfaces in
S
n
+
2
and minimal surfaces in
H
n
+
2
, i.e., there exists a smooth family of Willmore surfaces
{
y
t
:
U
~
→
S
n
+
2
,
t
∈
[
0
,
2
π
)
}
such that
(
y
t
)
|
t
=
0
is conformally equivalent to a minimal surface in
S
n
+
2
and
(
y
t
)
|
t
=
π
/
2
is conformally equivalent to a minimal surface in
H
n
+
2
. Here
U
~
is a simply connected open subset of the surface
M
. For some cases the deformations are global. By the Willmore deformations of the Veronese two-sphere and its generalizations in
S
4
, for any positive number
W
0
∈
R
+
, we construct complete minimal surfaces in
H
4
with Willmore energy being equal to
W
0
. An example of complete minimal Möbius strip in
H
4
with Willmore energy
6
5
π
5
≈
10.733
π
is also presented. We also show that all isotropic minimal surfaces in
S
4
admit Jacobi fields different from Killing fields, i.e., they are not “isolated”. |
doi_str_mv | 10.1007/s00209-022-03169-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2747917941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747917941</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-dddf4a789d6c8f48c0903be822f2531ef744f72d65ccbe1246f7e22b75c593293</originalsourceid><addsrcrecordid>eNpFkMFKxDAURYMoOI7-gKuAS4kmL0nTrEQGxxEGXKi4DG3zIh3atCYd_H2rI7i6D-7hXTiEXAp-Izg3t5lz4JZxAMalKCyTR2QhlAQmSpDHZDH3munSqFNylvOO87k0akHu3tuu64eE1GMYUl9N7RAzrXH6Qoy0b2PbVx3N-xSqBjNtI93Ea6BV9PRlPs7JSai6jBd_uSRv64fX1YZtnx-fVvdbNgptJua9D6oypfVFUwZVNtxyWWMJEEBLgcEoFQz4QjdNjQJUEQwC1EY32kqwckmuDn_HNHzuMU9uN-xTnCcdGGWsMFaJmZIHKo-pjR-Y_inB3Y8pdzDlZlPu15ST8hsjgFo_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747917941</pqid></control><display><type>article</type><title>Willmore deformations between minimal surfaces in Hn+2 and Sn+2</title><source>Springer Nature</source><creator>Wang, Changping ; Wang, Peng</creator><creatorcontrib>Wang, Changping ; Wang, Peng</creatorcontrib><description>In this paper we show that locally there exists a Willmore deformation between minimal surfaces in
S
n
+
2
and minimal surfaces in
H
n
+
2
, i.e., there exists a smooth family of Willmore surfaces
{
y
t
:
U
~
→
S
n
+
2
,
t
∈
[
0
,
2
π
)
}
such that
(
y
t
)
|
t
=
0
is conformally equivalent to a minimal surface in
S
n
+
2
and
(
y
t
)
|
t
=
π
/
2
is conformally equivalent to a minimal surface in
H
n
+
2
. Here
U
~
is a simply connected open subset of the surface
M
. For some cases the deformations are global. By the Willmore deformations of the Veronese two-sphere and its generalizations in
S
4
, for any positive number
W
0
∈
R
+
, we construct complete minimal surfaces in
H
4
with Willmore energy being equal to
W
0
. An example of complete minimal Möbius strip in
H
4
with Willmore energy
6
5
π
5
≈
10.733
π
is also presented. We also show that all isotropic minimal surfaces in
S
4
admit Jacobi fields different from Killing fields, i.e., they are not “isolated”.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-022-03169-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Deformation ; Equivalence ; Mathematics ; Mathematics and Statistics ; Minimal surfaces</subject><ispartof>Mathematische Zeitschrift, 2023, Vol.303 (1)</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-022-03169-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-022-03169-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wang, Changping</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><title>Willmore deformations between minimal surfaces in Hn+2 and Sn+2</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>In this paper we show that locally there exists a Willmore deformation between minimal surfaces in
S
n
+
2
and minimal surfaces in
H
n
+
2
, i.e., there exists a smooth family of Willmore surfaces
{
y
t
:
U
~
→
S
n
+
2
,
t
∈
[
0
,
2
π
)
}
such that
(
y
t
)
|
t
=
0
is conformally equivalent to a minimal surface in
S
n
+
2
and
(
y
t
)
|
t
=
π
/
2
is conformally equivalent to a minimal surface in
H
n
+
2
. Here
U
~
is a simply connected open subset of the surface
M
. For some cases the deformations are global. By the Willmore deformations of the Veronese two-sphere and its generalizations in
S
4
, for any positive number
W
0
∈
R
+
, we construct complete minimal surfaces in
H
4
with Willmore energy being equal to
W
0
. An example of complete minimal Möbius strip in
H
4
with Willmore energy
6
5
π
5
≈
10.733
π
is also presented. We also show that all isotropic minimal surfaces in
S
4
admit Jacobi fields different from Killing fields, i.e., they are not “isolated”.</description><subject>Deformation</subject><subject>Equivalence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Minimal surfaces</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkMFKxDAURYMoOI7-gKuAS4kmL0nTrEQGxxEGXKi4DG3zIh3atCYd_H2rI7i6D-7hXTiEXAp-Izg3t5lz4JZxAMalKCyTR2QhlAQmSpDHZDH3munSqFNylvOO87k0akHu3tuu64eE1GMYUl9N7RAzrXH6Qoy0b2PbVx3N-xSqBjNtI93Ea6BV9PRlPs7JSai6jBd_uSRv64fX1YZtnx-fVvdbNgptJua9D6oypfVFUwZVNtxyWWMJEEBLgcEoFQz4QjdNjQJUEQwC1EY32kqwckmuDn_HNHzuMU9uN-xTnCcdGGWsMFaJmZIHKo-pjR-Y_inB3Y8pdzDlZlPu15ST8hsjgFo_</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wang, Changping</creator><creator>Wang, Peng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>Willmore deformations between minimal surfaces in Hn+2 and Sn+2</title><author>Wang, Changping ; Wang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-dddf4a789d6c8f48c0903be822f2531ef744f72d65ccbe1246f7e22b75c593293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deformation</topic><topic>Equivalence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Minimal surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Changping</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Changping</au><au>Wang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Willmore deformations between minimal surfaces in Hn+2 and Sn+2</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2023</date><risdate>2023</risdate><volume>303</volume><issue>1</issue><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>In this paper we show that locally there exists a Willmore deformation between minimal surfaces in
S
n
+
2
and minimal surfaces in
H
n
+
2
, i.e., there exists a smooth family of Willmore surfaces
{
y
t
:
U
~
→
S
n
+
2
,
t
∈
[
0
,
2
π
)
}
such that
(
y
t
)
|
t
=
0
is conformally equivalent to a minimal surface in
S
n
+
2
and
(
y
t
)
|
t
=
π
/
2
is conformally equivalent to a minimal surface in
H
n
+
2
. Here
U
~
is a simply connected open subset of the surface
M
. For some cases the deformations are global. By the Willmore deformations of the Veronese two-sphere and its generalizations in
S
4
, for any positive number
W
0
∈
R
+
, we construct complete minimal surfaces in
H
4
with Willmore energy being equal to
W
0
. An example of complete minimal Möbius strip in
H
4
with Willmore energy
6
5
π
5
≈
10.733
π
is also presented. We also show that all isotropic minimal surfaces in
S
4
admit Jacobi fields different from Killing fields, i.e., they are not “isolated”.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-022-03169-3</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2023, Vol.303 (1) |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2747917941 |
source | Springer Nature |
subjects | Deformation Equivalence Mathematics Mathematics and Statistics Minimal surfaces |
title | Willmore deformations between minimal surfaces in Hn+2 and Sn+2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Willmore%20deformations%20between%20minimal%20surfaces%20in%20Hn+2%20and%20Sn+2&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Wang,%20Changping&rft.date=2023&rft.volume=303&rft.issue=1&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-022-03169-3&rft_dat=%3Cproquest_sprin%3E2747917941%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747917941&rft_id=info:pmid/&rfr_iscdi=true |