Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing
Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along gra...
Gespeichert in:
Veröffentlicht in: | Physics of the solid state 2022-07, Vol.64 (7), p.372-378 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 7 |
container_start_page | 372 |
container_title | Physics of the solid state |
container_volume | 64 |
creator | Ivanov, Yu. F. Gromov, V. E. Konovalov, S. V. Shliarova, Yu. A. Osintsev, K. A. Panchenko, I. A. |
description | Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times. |
doi_str_mv | 10.1134/S1063783422080042 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2747916818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729303833</galeid><sourcerecordid>A729303833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</originalsourceid><addsrcrecordid>eNp1kUtLxDAQgIso-PwB3gKePFQzSZumx3VZHyAqrp5Lmk5qpdusSQruvzdlBRGROcww832TwCTJKdALAJ5dLoEKXkieMUYlpRnbSQ6AljQVmaC7Uy14Os33k0Pv3ykFgLw8SNplGJsNsYaENyTL4EYdRodEDQ15cnaNLnTop7kit137li6GENsbMuvndu6u8aGLZW83RJmAjix61BEY0itUq2mDRu-7oT1O9ozqPZ5856Pk9XrxMr9N7x9v7uaz-1RzKEPKpWaa5pnmOQJIXihgSEvW5CKXOdR11uhcokFkUmmBWS2aUqimNnmjTC35UXK23bt29mNEH6p3O7ohPlmxIitKEBIm6mJLtarHqhuMDU7pGA2uOm0HNF3szwpWcsol51E4_yVEJuBnaNXofXW3fP7NwpbVznrv0FRr162U21RAq-lY1Z9jRYdtHR_ZoUX38-3_pS9AAJS5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747916818</pqid></control><display><type>article</type><title>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</title><source>SpringerLink (Online service)</source><creator>Ivanov, Yu. F. ; Gromov, V. E. ; Konovalov, S. V. ; Shliarova, Yu. A. ; Osintsev, K. A. ; Panchenko, I. A.</creator><creatorcontrib>Ivanov, Yu. F. ; Gromov, V. E. ; Konovalov, S. V. ; Shliarova, Yu. A. ; Osintsev, K. A. ; Panchenko, I. A.</creatorcontrib><description>Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783422080042</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>3D printing ; Alloys ; Aluminum base alloys ; Chromium ; Cobalt ; Columnar structure ; Compressive strength ; Crystallization ; Electron beams ; Entropy ; Grain boundaries ; Grain size ; Hardness ; High entropy alloys ; Inclusions ; Iron ; Irradiation ; Mechanical properties ; Microhardness ; Modulus of elasticity ; Oxygen atoms ; Oxygen enrichment ; Physics ; Physics and Astronomy ; Precipitates ; Residual stress ; Solid State Physics ; Specialty metals industry ; Stress distribution ; Surface layers ; Ternary alloys ; Tribology ; Wire industry</subject><ispartof>Physics of the solid state, 2022-07, Vol.64 (7), p.372-378</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7834, Physics of the Solid State, 2022, Vol. 64, No. 7, pp. 372–378. © Pleiades Publishing, Ltd., 2022. ISSN 1063-7834, Physics of the Solid State, 2022. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Fundamental’nye Problemy Sovremennogo Materialovedeniya, 2021, Vol. 18, No. 2, pp. 154–164.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</citedby><cites>FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783422080042$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783422080042$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ivanov, Yu. F.</creatorcontrib><creatorcontrib>Gromov, V. E.</creatorcontrib><creatorcontrib>Konovalov, S. V.</creatorcontrib><creatorcontrib>Shliarova, Yu. A.</creatorcontrib><creatorcontrib>Osintsev, K. A.</creatorcontrib><creatorcontrib>Panchenko, I. A.</creatorcontrib><title>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.</description><subject>3D printing</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Chromium</subject><subject>Cobalt</subject><subject>Columnar structure</subject><subject>Compressive strength</subject><subject>Crystallization</subject><subject>Electron beams</subject><subject>Entropy</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>Inclusions</subject><subject>Iron</subject><subject>Irradiation</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Modulus of elasticity</subject><subject>Oxygen atoms</subject><subject>Oxygen enrichment</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Precipitates</subject><subject>Residual stress</subject><subject>Solid State Physics</subject><subject>Specialty metals industry</subject><subject>Stress distribution</subject><subject>Surface layers</subject><subject>Ternary alloys</subject><subject>Tribology</subject><subject>Wire industry</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAQgIso-PwB3gKePFQzSZumx3VZHyAqrp5Lmk5qpdusSQruvzdlBRGROcww832TwCTJKdALAJ5dLoEKXkieMUYlpRnbSQ6AljQVmaC7Uy14Os33k0Pv3ykFgLw8SNplGJsNsYaENyTL4EYdRodEDQ15cnaNLnTop7kit137li6GENsbMuvndu6u8aGLZW83RJmAjix61BEY0itUq2mDRu-7oT1O9ozqPZ5856Pk9XrxMr9N7x9v7uaz-1RzKEPKpWaa5pnmOQJIXihgSEvW5CKXOdR11uhcokFkUmmBWS2aUqimNnmjTC35UXK23bt29mNEH6p3O7ohPlmxIitKEBIm6mJLtarHqhuMDU7pGA2uOm0HNF3szwpWcsol51E4_yVEJuBnaNXofXW3fP7NwpbVznrv0FRr162U21RAq-lY1Z9jRYdtHR_ZoUX38-3_pS9AAJS5</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ivanov, Yu. F.</creator><creator>Gromov, V. E.</creator><creator>Konovalov, S. V.</creator><creator>Shliarova, Yu. A.</creator><creator>Osintsev, K. A.</creator><creator>Panchenko, I. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220701</creationdate><title>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</title><author>Ivanov, Yu. F. ; Gromov, V. E. ; Konovalov, S. V. ; Shliarova, Yu. A. ; Osintsev, K. A. ; Panchenko, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Chromium</topic><topic>Cobalt</topic><topic>Columnar structure</topic><topic>Compressive strength</topic><topic>Crystallization</topic><topic>Electron beams</topic><topic>Entropy</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>Inclusions</topic><topic>Iron</topic><topic>Irradiation</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Modulus of elasticity</topic><topic>Oxygen atoms</topic><topic>Oxygen enrichment</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Precipitates</topic><topic>Residual stress</topic><topic>Solid State Physics</topic><topic>Specialty metals industry</topic><topic>Stress distribution</topic><topic>Surface layers</topic><topic>Ternary alloys</topic><topic>Tribology</topic><topic>Wire industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Yu. F.</creatorcontrib><creatorcontrib>Gromov, V. E.</creatorcontrib><creatorcontrib>Konovalov, S. V.</creatorcontrib><creatorcontrib>Shliarova, Yu. A.</creatorcontrib><creatorcontrib>Osintsev, K. A.</creatorcontrib><creatorcontrib>Panchenko, I. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Yu. F.</au><au>Gromov, V. E.</au><au>Konovalov, S. V.</au><au>Shliarova, Yu. A.</au><au>Osintsev, K. A.</au><au>Panchenko, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>64</volume><issue>7</issue><spage>372</spage><epage>378</epage><pages>372-378</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783422080042</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7834 |
ispartof | Physics of the solid state, 2022-07, Vol.64 (7), p.372-378 |
issn | 1063-7834 1090-6460 |
language | eng |
recordid | cdi_proquest_journals_2747916818 |
source | SpringerLink (Online service) |
subjects | 3D printing Alloys Aluminum base alloys Chromium Cobalt Columnar structure Compressive strength Crystallization Electron beams Entropy Grain boundaries Grain size Hardness High entropy alloys Inclusions Iron Irradiation Mechanical properties Microhardness Modulus of elasticity Oxygen atoms Oxygen enrichment Physics Physics and Astronomy Precipitates Residual stress Solid State Physics Specialty metals industry Stress distribution Surface layers Ternary alloys Tribology Wire industry |
title | Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20Structure%20and%20Properties%20of%20a%20High-Entropy%20AlCoCrFeNi%20Alloy%20after%20Electron-Beam%20Processing&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Ivanov,%20Yu.%20F.&rft.date=2022-07-01&rft.volume=64&rft.issue=7&rft.spage=372&rft.epage=378&rft.pages=372-378&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783422080042&rft_dat=%3Cgale_proqu%3EA729303833%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747916818&rft_id=info:pmid/&rft_galeid=A729303833&rfr_iscdi=true |