Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing

Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the solid state 2022-07, Vol.64 (7), p.372-378
Hauptverfasser: Ivanov, Yu. F., Gromov, V. E., Konovalov, S. V., Shliarova, Yu. A., Osintsev, K. A., Panchenko, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 7
container_start_page 372
container_title Physics of the solid state
container_volume 64
creator Ivanov, Yu. F.
Gromov, V. E.
Konovalov, S. V.
Shliarova, Yu. A.
Osintsev, K. A.
Panchenko, I. A.
description Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.
doi_str_mv 10.1134/S1063783422080042
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2747916818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A729303833</galeid><sourcerecordid>A729303833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</originalsourceid><addsrcrecordid>eNp1kUtLxDAQgIso-PwB3gKePFQzSZumx3VZHyAqrp5Lmk5qpdusSQruvzdlBRGROcww832TwCTJKdALAJ5dLoEKXkieMUYlpRnbSQ6AljQVmaC7Uy14Os33k0Pv3ykFgLw8SNplGJsNsYaENyTL4EYdRodEDQ15cnaNLnTop7kit137li6GENsbMuvndu6u8aGLZW83RJmAjix61BEY0itUq2mDRu-7oT1O9ozqPZ5856Pk9XrxMr9N7x9v7uaz-1RzKEPKpWaa5pnmOQJIXihgSEvW5CKXOdR11uhcokFkUmmBWS2aUqimNnmjTC35UXK23bt29mNEH6p3O7ohPlmxIitKEBIm6mJLtarHqhuMDU7pGA2uOm0HNF3szwpWcsol51E4_yVEJuBnaNXofXW3fP7NwpbVznrv0FRr162U21RAq-lY1Z9jRYdtHR_ZoUX38-3_pS9AAJS5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747916818</pqid></control><display><type>article</type><title>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</title><source>SpringerLink (Online service)</source><creator>Ivanov, Yu. F. ; Gromov, V. E. ; Konovalov, S. V. ; Shliarova, Yu. A. ; Osintsev, K. A. ; Panchenko, I. A.</creator><creatorcontrib>Ivanov, Yu. F. ; Gromov, V. E. ; Konovalov, S. V. ; Shliarova, Yu. A. ; Osintsev, K. A. ; Panchenko, I. A.</creatorcontrib><description>Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.</description><identifier>ISSN: 1063-7834</identifier><identifier>EISSN: 1090-6460</identifier><identifier>DOI: 10.1134/S1063783422080042</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>3D printing ; Alloys ; Aluminum base alloys ; Chromium ; Cobalt ; Columnar structure ; Compressive strength ; Crystallization ; Electron beams ; Entropy ; Grain boundaries ; Grain size ; Hardness ; High entropy alloys ; Inclusions ; Iron ; Irradiation ; Mechanical properties ; Microhardness ; Modulus of elasticity ; Oxygen atoms ; Oxygen enrichment ; Physics ; Physics and Astronomy ; Precipitates ; Residual stress ; Solid State Physics ; Specialty metals industry ; Stress distribution ; Surface layers ; Ternary alloys ; Tribology ; Wire industry</subject><ispartof>Physics of the solid state, 2022-07, Vol.64 (7), p.372-378</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1063-7834, Physics of the Solid State, 2022, Vol. 64, No. 7, pp. 372–378. © Pleiades Publishing, Ltd., 2022. ISSN 1063-7834, Physics of the Solid State, 2022. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2021, published in Fundamental’nye Problemy Sovremennogo Materialovedeniya, 2021, Vol. 18, No. 2, pp. 154–164.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</citedby><cites>FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063783422080042$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063783422080042$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ivanov, Yu. F.</creatorcontrib><creatorcontrib>Gromov, V. E.</creatorcontrib><creatorcontrib>Konovalov, S. V.</creatorcontrib><creatorcontrib>Shliarova, Yu. A.</creatorcontrib><creatorcontrib>Osintsev, K. A.</creatorcontrib><creatorcontrib>Panchenko, I. A.</creatorcontrib><title>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</title><title>Physics of the solid state</title><addtitle>Phys. Solid State</addtitle><description>Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.</description><subject>3D printing</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Chromium</subject><subject>Cobalt</subject><subject>Columnar structure</subject><subject>Compressive strength</subject><subject>Crystallization</subject><subject>Electron beams</subject><subject>Entropy</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>Inclusions</subject><subject>Iron</subject><subject>Irradiation</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Modulus of elasticity</subject><subject>Oxygen atoms</subject><subject>Oxygen enrichment</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Precipitates</subject><subject>Residual stress</subject><subject>Solid State Physics</subject><subject>Specialty metals industry</subject><subject>Stress distribution</subject><subject>Surface layers</subject><subject>Ternary alloys</subject><subject>Tribology</subject><subject>Wire industry</subject><issn>1063-7834</issn><issn>1090-6460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLxDAQgIso-PwB3gKePFQzSZumx3VZHyAqrp5Lmk5qpdusSQruvzdlBRGROcww832TwCTJKdALAJ5dLoEKXkieMUYlpRnbSQ6AljQVmaC7Uy14Os33k0Pv3ykFgLw8SNplGJsNsYaENyTL4EYdRodEDQ15cnaNLnTop7kit137li6GENsbMuvndu6u8aGLZW83RJmAjix61BEY0itUq2mDRu-7oT1O9ozqPZ5856Pk9XrxMr9N7x9v7uaz-1RzKEPKpWaa5pnmOQJIXihgSEvW5CKXOdR11uhcokFkUmmBWS2aUqimNnmjTC35UXK23bt29mNEH6p3O7ohPlmxIitKEBIm6mJLtarHqhuMDU7pGA2uOm0HNF3szwpWcsol51E4_yVEJuBnaNXofXW3fP7NwpbVznrv0FRr162U21RAq-lY1Z9jRYdtHR_ZoUX38-3_pS9AAJS5</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Ivanov, Yu. F.</creator><creator>Gromov, V. E.</creator><creator>Konovalov, S. V.</creator><creator>Shliarova, Yu. A.</creator><creator>Osintsev, K. A.</creator><creator>Panchenko, I. A.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220701</creationdate><title>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</title><author>Ivanov, Yu. F. ; Gromov, V. E. ; Konovalov, S. V. ; Shliarova, Yu. A. ; Osintsev, K. A. ; Panchenko, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-38c2c054c35e11837a12e092d565851bb4dc58efee28ac6e4b6d96adbf5dafb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Chromium</topic><topic>Cobalt</topic><topic>Columnar structure</topic><topic>Compressive strength</topic><topic>Crystallization</topic><topic>Electron beams</topic><topic>Entropy</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>Inclusions</topic><topic>Iron</topic><topic>Irradiation</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Modulus of elasticity</topic><topic>Oxygen atoms</topic><topic>Oxygen enrichment</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Precipitates</topic><topic>Residual stress</topic><topic>Solid State Physics</topic><topic>Specialty metals industry</topic><topic>Stress distribution</topic><topic>Surface layers</topic><topic>Ternary alloys</topic><topic>Tribology</topic><topic>Wire industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Yu. F.</creatorcontrib><creatorcontrib>Gromov, V. E.</creatorcontrib><creatorcontrib>Konovalov, S. V.</creatorcontrib><creatorcontrib>Shliarova, Yu. A.</creatorcontrib><creatorcontrib>Osintsev, K. A.</creatorcontrib><creatorcontrib>Panchenko, I. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of the solid state</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Yu. F.</au><au>Gromov, V. E.</au><au>Konovalov, S. V.</au><au>Shliarova, Yu. A.</au><au>Osintsev, K. A.</au><au>Panchenko, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing</atitle><jtitle>Physics of the solid state</jtitle><stitle>Phys. Solid State</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>64</volume><issue>7</issue><spage>372</spage><epage>378</epage><pages>372-378</pages><issn>1063-7834</issn><eissn>1090-6460</eissn><abstract>Using wire-arc additive manufacturing (WAAM), we produced samples of Al–Co–Cr–Fe–Ni high-entropy alloy (HEA) with a grain size of 4–15 µm. Inclusions of the second phase were found along the boundaries and in the volume of the grains. The near-boundary volumes of the alloy (volumes located along grain boundaries) are enriched in chromium and iron atoms, the volume of grains is enriched in nickel and aluminum atoms, and cobalt is quasi-uniformly distributed in the alloy. The inclusions of an elongated shape are enriched in chromium, iron, and oxygen atoms and may be carbides. Microhardness, modulus of elasticity, and tribological properties of the alloy are determined and the stretch curves are analyzed. Irradiation of the HEA with a pulsed electron beam is accompanied by the release of grain boundaries from precipitates of the second phase, which indicates the homogenization of the material. High-speed crystallization of the molten surface layer of HEA samples is accompanied by the formation of a columnar structure with a submicrometer-nanocrystalline structure. The electron-beam processing decreases the microhardness of the surface layer of the alloy with a thickness of up to 90 µm, which may be due to the relaxation of internal stress fields formed in the initial material during its manufacture. Irradiation of a high-entropy alloy with an intense pulsed electron beam improves the strength and plasticity of the material, increasing the compressive strength by 1.1–1.6 times.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063783422080042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7834
ispartof Physics of the solid state, 2022-07, Vol.64 (7), p.372-378
issn 1063-7834
1090-6460
language eng
recordid cdi_proquest_journals_2747916818
source SpringerLink (Online service)
subjects 3D printing
Alloys
Aluminum base alloys
Chromium
Cobalt
Columnar structure
Compressive strength
Crystallization
Electron beams
Entropy
Grain boundaries
Grain size
Hardness
High entropy alloys
Inclusions
Iron
Irradiation
Mechanical properties
Microhardness
Modulus of elasticity
Oxygen atoms
Oxygen enrichment
Physics
Physics and Astronomy
Precipitates
Residual stress
Solid State Physics
Specialty metals industry
Stress distribution
Surface layers
Ternary alloys
Tribology
Wire industry
title Study of the Structure and Properties of a High-Entropy AlCoCrFeNi Alloy after Electron-Beam Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20Structure%20and%20Properties%20of%20a%20High-Entropy%20AlCoCrFeNi%20Alloy%20after%20Electron-Beam%20Processing&rft.jtitle=Physics%20of%20the%20solid%20state&rft.au=Ivanov,%20Yu.%20F.&rft.date=2022-07-01&rft.volume=64&rft.issue=7&rft.spage=372&rft.epage=378&rft.pages=372-378&rft.issn=1063-7834&rft.eissn=1090-6460&rft_id=info:doi/10.1134/S1063783422080042&rft_dat=%3Cgale_proqu%3EA729303833%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747916818&rft_id=info:pmid/&rft_galeid=A729303833&rfr_iscdi=true