Financial Risk Management on a Neutral Atom Quantum Processor
Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Leclerc, Lucas Ortiz-Guitierrez, Luis Grijalva, Sebastian Albrecht, Boris Cline, Julia R K Elfving, Vincent E Signoles, Adrien Henriet, Loïc Gianni Del Bimbo Usman Ayub Sheikh Shah, Maitree Luc, Andrea Ishtiaq, Faysal Duarte, Andoni Mugel, Samuel Caceres, Irene Kurek, Michel Orus, Roman Seddik, Achraf Hammammi, Oumaima Isselnane, Hacene M'tamon, Didier |
description | Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747737113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747737113</sourcerecordid><originalsourceid>FETCH-proquest_journals_27477371133</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F9qkNS4OIhYXRaV7OUqU1uaiueT97eADOP3D989EIpUqsm0p5UKkzEOe53KjZVWpROzqnpC6Hke49_yCMxI-jTUUwBEgXEwMfsJ9cBZuESlEC1fvOsPs_ErMHziySX9dinV9bA6n7O3dJxoO7eCip4laqUutlS4Kpf67vj5XN4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747737113</pqid></control><display><type>article</type><title>Financial Risk Management on a Neutral Atom Quantum Processor</title><source>Free E- Journals</source><creator>Leclerc, Lucas ; Ortiz-Guitierrez, Luis ; Grijalva, Sebastian ; Albrecht, Boris ; Cline, Julia R K ; Elfving, Vincent E ; Signoles, Adrien ; Henriet, Loïc ; Gianni Del Bimbo ; Usman Ayub Sheikh ; Shah, Maitree ; Luc, Andrea ; Ishtiaq, Faysal ; Duarte, Andoni ; Mugel, Samuel ; Caceres, Irene ; Kurek, Michel ; Orus, Roman ; Seddik, Achraf ; Hammammi, Oumaima ; Isselnane, Hacene ; M'tamon, Didier</creator><creatorcontrib>Leclerc, Lucas ; Ortiz-Guitierrez, Luis ; Grijalva, Sebastian ; Albrecht, Boris ; Cline, Julia R K ; Elfving, Vincent E ; Signoles, Adrien ; Henriet, Loïc ; Gianni Del Bimbo ; Usman Ayub Sheikh ; Shah, Maitree ; Luc, Andrea ; Ishtiaq, Faysal ; Duarte, Andoni ; Mugel, Samuel ; Caceres, Irene ; Kurek, Michel ; Orus, Roman ; Seddik, Achraf ; Hammammi, Oumaima ; Isselnane, Hacene ; M'tamon, Didier</creatorcontrib><description>Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Datasets ; Machine learning ; Mathematical models ; Microprocessors ; Neutral atoms ; Optimization ; Quantum computing ; Qubits (quantum computing) ; Risk management ; Tensors</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Leclerc, Lucas</creatorcontrib><creatorcontrib>Ortiz-Guitierrez, Luis</creatorcontrib><creatorcontrib>Grijalva, Sebastian</creatorcontrib><creatorcontrib>Albrecht, Boris</creatorcontrib><creatorcontrib>Cline, Julia R K</creatorcontrib><creatorcontrib>Elfving, Vincent E</creatorcontrib><creatorcontrib>Signoles, Adrien</creatorcontrib><creatorcontrib>Henriet, Loïc</creatorcontrib><creatorcontrib>Gianni Del Bimbo</creatorcontrib><creatorcontrib>Usman Ayub Sheikh</creatorcontrib><creatorcontrib>Shah, Maitree</creatorcontrib><creatorcontrib>Luc, Andrea</creatorcontrib><creatorcontrib>Ishtiaq, Faysal</creatorcontrib><creatorcontrib>Duarte, Andoni</creatorcontrib><creatorcontrib>Mugel, Samuel</creatorcontrib><creatorcontrib>Caceres, Irene</creatorcontrib><creatorcontrib>Kurek, Michel</creatorcontrib><creatorcontrib>Orus, Roman</creatorcontrib><creatorcontrib>Seddik, Achraf</creatorcontrib><creatorcontrib>Hammammi, Oumaima</creatorcontrib><creatorcontrib>Isselnane, Hacene</creatorcontrib><creatorcontrib>M'tamon, Didier</creatorcontrib><title>Financial Risk Management on a Neutral Atom Quantum Processor</title><title>arXiv.org</title><description>Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Neutral atoms</subject><subject>Optimization</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Risk management</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F9qkNS4OIhYXRaV7OUqU1uaiueT97eADOP3D989EIpUqsm0p5UKkzEOe53KjZVWpROzqnpC6Hke49_yCMxI-jTUUwBEgXEwMfsJ9cBZuESlEC1fvOsPs_ErMHziySX9dinV9bA6n7O3dJxoO7eCip4laqUutlS4Kpf67vj5XN4Y</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Leclerc, Lucas</creator><creator>Ortiz-Guitierrez, Luis</creator><creator>Grijalva, Sebastian</creator><creator>Albrecht, Boris</creator><creator>Cline, Julia R K</creator><creator>Elfving, Vincent E</creator><creator>Signoles, Adrien</creator><creator>Henriet, Loïc</creator><creator>Gianni Del Bimbo</creator><creator>Usman Ayub Sheikh</creator><creator>Shah, Maitree</creator><creator>Luc, Andrea</creator><creator>Ishtiaq, Faysal</creator><creator>Duarte, Andoni</creator><creator>Mugel, Samuel</creator><creator>Caceres, Irene</creator><creator>Kurek, Michel</creator><creator>Orus, Roman</creator><creator>Seddik, Achraf</creator><creator>Hammammi, Oumaima</creator><creator>Isselnane, Hacene</creator><creator>M'tamon, Didier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240403</creationdate><title>Financial Risk Management on a Neutral Atom Quantum Processor</title><author>Leclerc, Lucas ; Ortiz-Guitierrez, Luis ; Grijalva, Sebastian ; Albrecht, Boris ; Cline, Julia R K ; Elfving, Vincent E ; Signoles, Adrien ; Henriet, Loïc ; Gianni Del Bimbo ; Usman Ayub Sheikh ; Shah, Maitree ; Luc, Andrea ; Ishtiaq, Faysal ; Duarte, Andoni ; Mugel, Samuel ; Caceres, Irene ; Kurek, Michel ; Orus, Roman ; Seddik, Achraf ; Hammammi, Oumaima ; Isselnane, Hacene ; M'tamon, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27477371133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Neutral atoms</topic><topic>Optimization</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Risk management</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Leclerc, Lucas</creatorcontrib><creatorcontrib>Ortiz-Guitierrez, Luis</creatorcontrib><creatorcontrib>Grijalva, Sebastian</creatorcontrib><creatorcontrib>Albrecht, Boris</creatorcontrib><creatorcontrib>Cline, Julia R K</creatorcontrib><creatorcontrib>Elfving, Vincent E</creatorcontrib><creatorcontrib>Signoles, Adrien</creatorcontrib><creatorcontrib>Henriet, Loïc</creatorcontrib><creatorcontrib>Gianni Del Bimbo</creatorcontrib><creatorcontrib>Usman Ayub Sheikh</creatorcontrib><creatorcontrib>Shah, Maitree</creatorcontrib><creatorcontrib>Luc, Andrea</creatorcontrib><creatorcontrib>Ishtiaq, Faysal</creatorcontrib><creatorcontrib>Duarte, Andoni</creatorcontrib><creatorcontrib>Mugel, Samuel</creatorcontrib><creatorcontrib>Caceres, Irene</creatorcontrib><creatorcontrib>Kurek, Michel</creatorcontrib><creatorcontrib>Orus, Roman</creatorcontrib><creatorcontrib>Seddik, Achraf</creatorcontrib><creatorcontrib>Hammammi, Oumaima</creatorcontrib><creatorcontrib>Isselnane, Hacene</creatorcontrib><creatorcontrib>M'tamon, Didier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leclerc, Lucas</au><au>Ortiz-Guitierrez, Luis</au><au>Grijalva, Sebastian</au><au>Albrecht, Boris</au><au>Cline, Julia R K</au><au>Elfving, Vincent E</au><au>Signoles, Adrien</au><au>Henriet, Loïc</au><au>Gianni Del Bimbo</au><au>Usman Ayub Sheikh</au><au>Shah, Maitree</au><au>Luc, Andrea</au><au>Ishtiaq, Faysal</au><au>Duarte, Andoni</au><au>Mugel, Samuel</au><au>Caceres, Irene</au><au>Kurek, Michel</au><au>Orus, Roman</au><au>Seddik, Achraf</au><au>Hammammi, Oumaima</au><au>Isselnane, Hacene</au><au>M'tamon, Didier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Financial Risk Management on a Neutral Atom Quantum Processor</atitle><jtitle>arXiv.org</jtitle><date>2024-04-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2747737113 |
source | Free E- Journals |
subjects | Algorithms Datasets Machine learning Mathematical models Microprocessors Neutral atoms Optimization Quantum computing Qubits (quantum computing) Risk management Tensors |
title | Financial Risk Management on a Neutral Atom Quantum Processor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Financial%20Risk%20Management%20on%20a%20Neutral%20Atom%20Quantum%20Processor&rft.jtitle=arXiv.org&rft.au=Leclerc,%20Lucas&rft.date=2024-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747737113%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747737113&rft_id=info:pmid/&rfr_iscdi=true |