Financial Risk Management on a Neutral Atom Quantum Processor

Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Leclerc, Lucas, Ortiz-Guitierrez, Luis, Grijalva, Sebastian, Albrecht, Boris, Cline, Julia R K, Elfving, Vincent E, Signoles, Adrien, Henriet, Loïc, Gianni Del Bimbo, Usman Ayub Sheikh, Shah, Maitree, Luc, Andrea, Ishtiaq, Faysal, Duarte, Andoni, Mugel, Samuel, Caceres, Irene, Kurek, Michel, Orus, Roman, Seddik, Achraf, Hammammi, Oumaima, Isselnane, Hacene, M'tamon, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Leclerc, Lucas
Ortiz-Guitierrez, Luis
Grijalva, Sebastian
Albrecht, Boris
Cline, Julia R K
Elfving, Vincent E
Signoles, Adrien
Henriet, Loïc
Gianni Del Bimbo
Usman Ayub Sheikh
Shah, Maitree
Luc, Andrea
Ishtiaq, Faysal
Duarte, Andoni
Mugel, Samuel
Caceres, Irene
Kurek, Michel
Orus, Roman
Seddik, Achraf
Hammammi, Oumaima
Isselnane, Hacene
M'tamon, Didier
description Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2747737113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2747737113</sourcerecordid><originalsourceid>FETCH-proquest_journals_27477371133</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOxw4F9qkNS4OIhYXRaV7OUqU1uaiueT97eADOP3D989EIpUqsm0p5UKkzEOe53KjZVWpROzqnpC6Hke49_yCMxI-jTUUwBEgXEwMfsJ9cBZuESlEC1fvOsPs_ErMHziySX9dinV9bA6n7O3dJxoO7eCip4laqUutlS4Kpf67vj5XN4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747737113</pqid></control><display><type>article</type><title>Financial Risk Management on a Neutral Atom Quantum Processor</title><source>Free E- Journals</source><creator>Leclerc, Lucas ; Ortiz-Guitierrez, Luis ; Grijalva, Sebastian ; Albrecht, Boris ; Cline, Julia R K ; Elfving, Vincent E ; Signoles, Adrien ; Henriet, Loïc ; Gianni Del Bimbo ; Usman Ayub Sheikh ; Shah, Maitree ; Luc, Andrea ; Ishtiaq, Faysal ; Duarte, Andoni ; Mugel, Samuel ; Caceres, Irene ; Kurek, Michel ; Orus, Roman ; Seddik, Achraf ; Hammammi, Oumaima ; Isselnane, Hacene ; M'tamon, Didier</creator><creatorcontrib>Leclerc, Lucas ; Ortiz-Guitierrez, Luis ; Grijalva, Sebastian ; Albrecht, Boris ; Cline, Julia R K ; Elfving, Vincent E ; Signoles, Adrien ; Henriet, Loïc ; Gianni Del Bimbo ; Usman Ayub Sheikh ; Shah, Maitree ; Luc, Andrea ; Ishtiaq, Faysal ; Duarte, Andoni ; Mugel, Samuel ; Caceres, Irene ; Kurek, Michel ; Orus, Roman ; Seddik, Achraf ; Hammammi, Oumaima ; Isselnane, Hacene ; M'tamon, Didier</creatorcontrib><description>Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Datasets ; Machine learning ; Mathematical models ; Microprocessors ; Neutral atoms ; Optimization ; Quantum computing ; Qubits (quantum computing) ; Risk management ; Tensors</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Leclerc, Lucas</creatorcontrib><creatorcontrib>Ortiz-Guitierrez, Luis</creatorcontrib><creatorcontrib>Grijalva, Sebastian</creatorcontrib><creatorcontrib>Albrecht, Boris</creatorcontrib><creatorcontrib>Cline, Julia R K</creatorcontrib><creatorcontrib>Elfving, Vincent E</creatorcontrib><creatorcontrib>Signoles, Adrien</creatorcontrib><creatorcontrib>Henriet, Loïc</creatorcontrib><creatorcontrib>Gianni Del Bimbo</creatorcontrib><creatorcontrib>Usman Ayub Sheikh</creatorcontrib><creatorcontrib>Shah, Maitree</creatorcontrib><creatorcontrib>Luc, Andrea</creatorcontrib><creatorcontrib>Ishtiaq, Faysal</creatorcontrib><creatorcontrib>Duarte, Andoni</creatorcontrib><creatorcontrib>Mugel, Samuel</creatorcontrib><creatorcontrib>Caceres, Irene</creatorcontrib><creatorcontrib>Kurek, Michel</creatorcontrib><creatorcontrib>Orus, Roman</creatorcontrib><creatorcontrib>Seddik, Achraf</creatorcontrib><creatorcontrib>Hammammi, Oumaima</creatorcontrib><creatorcontrib>Isselnane, Hacene</creatorcontrib><creatorcontrib>M'tamon, Didier</creatorcontrib><title>Financial Risk Management on a Neutral Atom Quantum Processor</title><title>arXiv.org</title><description>Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.</description><subject>Algorithms</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Microprocessors</subject><subject>Neutral atoms</subject><subject>Optimization</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>Risk management</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOxw4F9qkNS4OIhYXRaV7OUqU1uaiueT97eADOP3D989EIpUqsm0p5UKkzEOe53KjZVWpROzqnpC6Hke49_yCMxI-jTUUwBEgXEwMfsJ9cBZuESlEC1fvOsPs_ErMHziySX9dinV9bA6n7O3dJxoO7eCip4laqUutlS4Kpf67vj5XN4Y</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Leclerc, Lucas</creator><creator>Ortiz-Guitierrez, Luis</creator><creator>Grijalva, Sebastian</creator><creator>Albrecht, Boris</creator><creator>Cline, Julia R K</creator><creator>Elfving, Vincent E</creator><creator>Signoles, Adrien</creator><creator>Henriet, Loïc</creator><creator>Gianni Del Bimbo</creator><creator>Usman Ayub Sheikh</creator><creator>Shah, Maitree</creator><creator>Luc, Andrea</creator><creator>Ishtiaq, Faysal</creator><creator>Duarte, Andoni</creator><creator>Mugel, Samuel</creator><creator>Caceres, Irene</creator><creator>Kurek, Michel</creator><creator>Orus, Roman</creator><creator>Seddik, Achraf</creator><creator>Hammammi, Oumaima</creator><creator>Isselnane, Hacene</creator><creator>M'tamon, Didier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240403</creationdate><title>Financial Risk Management on a Neutral Atom Quantum Processor</title><author>Leclerc, Lucas ; Ortiz-Guitierrez, Luis ; Grijalva, Sebastian ; Albrecht, Boris ; Cline, Julia R K ; Elfving, Vincent E ; Signoles, Adrien ; Henriet, Loïc ; Gianni Del Bimbo ; Usman Ayub Sheikh ; Shah, Maitree ; Luc, Andrea ; Ishtiaq, Faysal ; Duarte, Andoni ; Mugel, Samuel ; Caceres, Irene ; Kurek, Michel ; Orus, Roman ; Seddik, Achraf ; Hammammi, Oumaima ; Isselnane, Hacene ; M'tamon, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27477371133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Microprocessors</topic><topic>Neutral atoms</topic><topic>Optimization</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>Risk management</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Leclerc, Lucas</creatorcontrib><creatorcontrib>Ortiz-Guitierrez, Luis</creatorcontrib><creatorcontrib>Grijalva, Sebastian</creatorcontrib><creatorcontrib>Albrecht, Boris</creatorcontrib><creatorcontrib>Cline, Julia R K</creatorcontrib><creatorcontrib>Elfving, Vincent E</creatorcontrib><creatorcontrib>Signoles, Adrien</creatorcontrib><creatorcontrib>Henriet, Loïc</creatorcontrib><creatorcontrib>Gianni Del Bimbo</creatorcontrib><creatorcontrib>Usman Ayub Sheikh</creatorcontrib><creatorcontrib>Shah, Maitree</creatorcontrib><creatorcontrib>Luc, Andrea</creatorcontrib><creatorcontrib>Ishtiaq, Faysal</creatorcontrib><creatorcontrib>Duarte, Andoni</creatorcontrib><creatorcontrib>Mugel, Samuel</creatorcontrib><creatorcontrib>Caceres, Irene</creatorcontrib><creatorcontrib>Kurek, Michel</creatorcontrib><creatorcontrib>Orus, Roman</creatorcontrib><creatorcontrib>Seddik, Achraf</creatorcontrib><creatorcontrib>Hammammi, Oumaima</creatorcontrib><creatorcontrib>Isselnane, Hacene</creatorcontrib><creatorcontrib>M'tamon, Didier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leclerc, Lucas</au><au>Ortiz-Guitierrez, Luis</au><au>Grijalva, Sebastian</au><au>Albrecht, Boris</au><au>Cline, Julia R K</au><au>Elfving, Vincent E</au><au>Signoles, Adrien</au><au>Henriet, Loïc</au><au>Gianni Del Bimbo</au><au>Usman Ayub Sheikh</au><au>Shah, Maitree</au><au>Luc, Andrea</au><au>Ishtiaq, Faysal</au><au>Duarte, Andoni</au><au>Mugel, Samuel</au><au>Caceres, Irene</au><au>Kurek, Michel</au><au>Orus, Roman</au><au>Seddik, Achraf</au><au>Hammammi, Oumaima</au><au>Isselnane, Hacene</au><au>M'tamon, Didier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Financial Risk Management on a Neutral Atom Quantum Processor</atitle><jtitle>arXiv.org</jtitle><date>2024-04-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Machine Learning models capable of handling the large datasets collected in the financial world can often become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques, that combined with classical algorithms, may deliver competitive, faster and more interpretable models. In this work we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades, also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a neutral atom Quantum Processing Unit with up to 60 qubits on a real-life dataset. We report competitive performances against the state-of-the-art Random Forest benchmark whilst our model achieves better interpretability and comparable training times. We examine how to improve performance in the near-term validating our ideas with Tensor Networks-based numerical simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2747737113
source Free E- Journals
subjects Algorithms
Datasets
Machine learning
Mathematical models
Microprocessors
Neutral atoms
Optimization
Quantum computing
Qubits (quantum computing)
Risk management
Tensors
title Financial Risk Management on a Neutral Atom Quantum Processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Financial%20Risk%20Management%20on%20a%20Neutral%20Atom%20Quantum%20Processor&rft.jtitle=arXiv.org&rft.au=Leclerc,%20Lucas&rft.date=2024-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2747737113%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747737113&rft_id=info:pmid/&rfr_iscdi=true